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1 26-AUG-24

1.1 Order, Linear, and PDE vs ODE

Not notated. Will add when I have time.

2 28-AUG-24

2.1 Miscellaneous

Prof is Phillip Hutton. There are several ways to take the quiz. Quiz, office hours, etc. you can also take it in class.
All quiz get one page cheat sheet.

2.2 Verifying solutions using initial conditions

To verify potential solutions, plug into the original diffeq. Use algebra (ha!) to make LHS = RHS. On the other
hand, we can simply plug in various numbers for x and check for equivalency. Obviously, check for domains.

Example 2.1.
y′ = xy

1
2

Potential Solution:

y =
1

16
x4

Then,
dy

dx
=

1

4
x3

Then, plug into the original diffeq. We have:

1

4
x3 = x · ( 1

16
x4)

1
2

or that
1

4
x3 =

1

4
x3

as desired.

Example 2.2.

(y − x)
dy

dx
= y − x+ 8

Potential Solution 1:
y = 2x+ 4

√
x+ 2

Potential Solution 2:
y = x+ 4

√
x+ 2

Case 1:
dy

dx
= 2 + 2(x+ 2)

−1
2
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Then, plug into the original diffeq. We have:

(2x+ 4
√
x+ 2− x)(2 + 2(x+ 2)

−1
2 ) = 2x+ 4

√
x+ 2− x+ 8

Simplifying,

(x+ 4
√
x+ 2)(2 + 2(x+ 2)

−1
2 ) = x+ 8 + 4

√
x+ 2

Consider the case that x = 0. Then,

(4
√
2)(2 + 2(2)

−1
2 ) = 8 + 4

√
2

8
√
2 + 8 = 8 + 4

√
2

or that
8
√
2 = 4

√
2

which is clearly false.
Solution 2 works. You plug it in like above, but end with a true statement.

2.3 IVPs

Solving a diffeq yields a general solution with unknowns. Using initial values we can then solve for said unknowns.
For n unknowns, we need n initial values.

Let’s do an example!

Example 2.3. y′ = y, where y(0) = 3. We know our general solution is

y = Cex

but what is C? clearly, since y(0) = 3, and at x = 0, y = c, 3 = C. Thus, the equation is really

y = 3ex

Example 2.4. y′ + 2xy2 = 0, where y(0) = 1. The general solution to this is y = 1
x+C . Plugging in at x = 0, we

have C = −1. Final solution is y = 1
x−1 .

Example 2.5. x′′ + 16x = 0, where x(π2 ) = −2, x′(π2 ) = 1. The general solution is

x = C1 cos 4t+ C2 sin 4t

You plug in twice, you get C1 = −2 and after the second step you get C2 = 1
4 . Then plug in to general equation.

Yay.

3 30-AUG-24

3.1 Integrating Factor

This is the most fun McIlwain review. When do we use this?

Theorem 1. If you can write a differential equation to be of the form dy
dx + p(x)y = f(x), you are eligible to use

Integrating Factor.

The algorithm for solving goes something like this:

dy

dx
+ p(x)y = f(x)

Multiply both sides by:
If = e

∫
p(x) dx

You get:

e
∫
p(x) dx dy

dx
+ e

∫
p(x) dxp(x)y = e

∫
p(x) dxf(x)

3



Using reverse chain rule:
d

dx
[e

∫
p(x) dxy] = e

∫
p(x) dxf(x)

Integrating both sides, we get:

e
∫
p(x) dxy =

∫
e
∫
p(x) dxf(x)

This gets us:

y(x) =

∫
e
∫
p(x) dxf(x)

e
∫
p(x) dx

Example 3.1.
dy

dx
= 5y

This seems separable, and it is. But if you were to use integrating factor, it goes like this:

dy

dx
− 5y = 0

Note that this makes p(t) = −5
y = Ce5x

Example 3.2.
dy

dx
+ y = e3x

Note that this makes p(x) = 1, f(x) = e3x

ex
dy

dx
= e3xex = e4x

exy =
1

4
e4x + C

y =
1
4e

4x + C

ex

or:

4 04-SEP-24

We have a quiz lol. Three questions, about 20-25 minutes.

4.1 Separation of Variables

Definition 1 (separable). A differential equation is separable if you can put it into the form dy
dx = f(x)h(y), where

f h are functions.

The steps to solving them are as follows:
dy

dx
= f(x)h(y)

dy

h(y)
= f(x)dx∫

dy

h(y)
=

∫
f(x)dx

then, solve. Let’s check for separability of some cases:

Example 4.1.
dy

dx
− y = cosx

dy

dx
= cosx+ y

This does not satisfy the form specified in the definition, so it is not separable.

4



Example 4.2.
dy

dx
= x2y4e5x−3y

We can rewrite as:
dy

dx
= (x2e5x)(y4e−3y)

This is separable, as it satisfies the above form.

Now, let’s solve one:

Example 4.3.
(1− x)dy = −ydx

where y(0) = 5
Rewriting, we get:

1

1− x
dx =

−1

y
dy

Integrating, we get:
− ln 1− x = − ln y + C

When y(0) = 5, we have 0 = − ln 5 + C, so C = ln 5 So,

− ln 1− x = − ln y + ln 5

and then:
ln y = ln 1− x+ ln 5

Exponentiating,
eln y = eln 1−x+ln 5

y = 5(1− x)

Example 4.4.
1

y

dy

dx
= 1− x

where y(0) = 2 The joke is you don’t actually need to use separation to do this. But you can.

5 06-SEP-24

5.1 Exact Equations

Exact equations are a specific form of differential equation.

Definition 2. For f(x, y) = k, where k is a constant, then df = df
dxdx+ df

dydy = 0.

Then, let us define M(x, y) = df
dx and N(x, y) = df

dy . So, M(x, y)dx+N(x, y)dy = 0. Differentiating, we get:

dm

dy
=

d2f

dxdy
=
dN

dx

Definition 3. If M(x, y)dx+N(x, y)dy = 0 and dm
dy = d2f

dxdy = dN
dx , then

df
dx =M and df

dy = N .

This gives us a general algorithm for solving differential equations of some classes:

1. Put the DE into form M(x, y)dx+N(x, y)dy = 0

2. Then, identify M(x, y) and N(x, y)

3. Then, test for exactness: that is, dM
dy = dN

dx . If true, we have an exact equation.

4. From df
dx =M , we have df =Mdx, which, when integrating, gets f(x, y) = g(x, y) + h(y).

5



5. Similarly, from df
dy = N , we have df

dy = dg
dy + dh

dy = N , which, when integrating, gets f(x, y) = g(x, y) + h(y).

Think of h(y) as a constant term.

6. This gets us h(y) =
∫
N − dg

dydy. Then we substitute h(y) into f(x, y) and set f(x, y) = C.

I think an example may help more.

Example 5.1. −2xydx = (x2 − 1)dy. Set up involves rewriting into the form, which gives us:

2xydx+ (x2 − 1)dy = 0

where M = 2xy, N = x2 − 1. Then, we check if the equation is exact, which requires us to take the partials
of both sides, that is dM

dy and dN
dx . Since they are both 2x, we’re good to continue. Now, df

dx = 2xy, and then

f(x, y) =
∫
2xydx. We get f(x, y) = x2y + h(y). We now do the same thing for df

dy = N . That is, df
dy = N . That is,

x2 +
dh

dy
= x2 − 1

, and so dh
dy = −1. Then,

∫
dh = −

∫
dy, and so h(y) = −y + C. Setting f(x, y) = C, we have x2y − y = C.

Another example.

Example 5.2. (x2 + 2xy + y2)dx + (2xy + x2 − 1)dy = 0 There’s a cheeky sum of squares method for this.
M = (x2 + 2xy + y2) and N = (2xy + x2 − 1). Doing the test, we get dM

dy = 2x + 2y = dN
dx . This is true, by the

wonders of the commutative property. Then, df
dx =M = x2+2xy+ y2. Integrating, we get some silly little equation:

f(x, y) =
1

3
x3 + x2y + xy2 + h(y)

. Then, if df
dy = N , we can solve for h(y), as then d

dyf(x, y) = x2y+2xy+−1, and so dh
dy = −1, and then h(y) = −y+C.

And then we set f(x, y) = C.

Another one. Cue DJ Khaled.

Example 5.3. (x3 + cos y + 1
x )dy = ( y

x2 − 3x2y)dx. Initially, N is on the left, M is on the right. More accurately,

(
y

x2
− 3x2y)dx− (x3 + cos y +

1

x
)dy = 0

dM
dy = 1

x2 − 3x2. This is the same as dN
dx . Practice these differentiations, kids. Therefore, this is an exact equation.

df
dx =M =⇒ f(x, y) = −y

x − x3y + h(y). Similarly, df
dy = N and df

dy = −1
x − x3 + dh

dy = −(x3 + cos y + 1
x ). Then,

solve for h(y) and continue, and you’re done.

6 09-SEP-24

6.1 Separation of Variables, but more

Example 6.1. Find the general solution to the differential equation:

e−2ydy = e3xdx

−1

2
e−2y =

1

3
e3x + C

Multiplying by −2, we have:

e−2y =
−2

3
e3x + C

Taking natural logs:

ln e−2y = ln
−2

3
e3x + C

−2y = ln
−2

3
e3x + C

6



6.2 Exact equations, but more

Example 6.2. Find the general solution of:

(sin y − y sinx)dx = −(cosx+ x cos y)dx

First, get it into the form:
(sin y − y sinx)dx+ (cosx+ x cos y)dy = 0

Note that My = cos y − sinx and Nx = − sinx+ cos y. It is exact.∫
Mdx = x sin y + cosxy

Therefore, ψ(x, y) = x sin y + cosxy + h(y). Then, we take the partial again:

ψ(x, y)y = x cos y + cosx+ h′(y)

Note that N = cosx+ x cos y and so h′(y) = 0 We get: x sin y + cosxy = C.

7 11-SEP-24

7.1 Bernoulli Equations

So what is Bernoulli’s equation?

Definition 4. Bernoulli equations are of the form:

dy

dx
+ p(x)y = f(x)yn

Notice that this is nonlinear. So we have to make it linear, to make our life easier.
Here’s the steps:

1. Put the differential equation in the form dy
dx + p(x)y = f(x)yn, and then identify n.

2. Then, substitute y = u
1

1−n , which implies that dy
dx = 1

1−nu
1

1−n−1 du
dx .

3. This will be an ODE. We then solve for u using either separation of variables, integrating factor, or exact
equations. It’s usually integrating factor.

4. Then, once we solve for u, substitute back u = y1−n, and then solve for y(x).

Example 7.1. Let’s solve:

x
dy

dx
+ y = x2y2

The first step is easy. To put it in the form dy
dx + p(x)y = f(x)yn, we divide by x, which gives us:

dy

dx
+

1

x
y = xy2

Note that this makes n = 2. Then, we substitute for u:

y = u−1 =⇒ dy

dx
= −u−2 du

dx

Continuing our evaluation, we get:

−u−2 du

dx
+

1

x

1

u
= x(u−1)2

which gets us
du

dx
− 1

x
u = −x

This is easy to solve using integrating factor. Note that p(x) = −1
x . We end up with u(x) = −x2 − Cx. (Note that

I would always write +Cx here, but I’m following the professor’s directive). Plugging it back in, we have u = y−1.
We end up with y = (−x2 − Cx)−1.

7



Another one.

Example 7.2. Let’s solve:

x2
dy

dx
− 2xy = 3y4

We divide by x2 now, which gives us:
dy

dx
− 2

x
y =

3

x2
y4

So, n = 4. Then, we substitute for u:

y = u−
1
3 =⇒ dy

dx
=

−1

3
u−

4
3
du

dx
This gives us

−1

3
u−

4
3
du

dx
− 2

x
u−

1
3 =

3

x2
u

−4
3

which gets us
du

dx
+

6

x
u = − 9

x2

Integrating factor gets us u(x) = C/x6 − 9
5x . Since u(x) = y−3, y−3 = C/x6 − 9

5x , which gets us:

y = (C/x6 − 9

5x
)3

Example 7.3. Let’s solve:

x2
dy

dx
− 2xy = 3y4

We divide by x2 now, which gives us:
dy

dx
− 2

x
y =

3

x2
y4

So, n = 4. Then, we substitute for u:

y = u−
1
3 =⇒ dy

dx
=

−1

3
u−

4
3
du

dx
This gives us

−1

3
u−

4
3
du

dx
− 2

x
u−

1
3 =

3

x2
u

−4
3

which gets us
du

dx
+

6

x
u = − 9

x2

Integrating factor gets us u(x) = C/x6 − 9
5x . Since u(x) = y−3, y−3 = C/x6 − 9

5x , which gets us:

y = (C/x6 − 9

5x
)

−1
3

Another one.

Example 7.4. Let’s solve:

x
dy

dx
+ y − y−2 = 0

Step 1:
dy

dx
+

1

x
y =

1

x
y−2

So, n = −2. Substitute for u:

y = u
1
3 =⇒ dy

dx
=

1

3
u−

2
3
du

dx
Then,

1

3
u−

−2
3
du

dx
+

1

x
u

1
3 =

1

x
u

−2
3

which gets us
du

dx
+

3

x
u =

3

x

Integrating factor gets us u(x) = C
x3 + 1. So y3 = C

x3 + 1, which gets us:

y = (
C

x3
+ 1)

1
3

8



8 13-SEP-24

8.1 Second order ODEs with constant coefficients

The form of this equation is:

a
dy2

dx2
+ b

dy

dx
+ cy = 0

where a, b, c are constants.
Here are the general steps:

1. Put the DE into the form ay′′ + by′ + c = 0, and then identify a, b, c

2. Then, find the roots to the characteristic equation am2 + bm+ c = 0, using the quadratic equation.

3. Your solution depends on your solutions to this characteristic equation m1,m2.

Theorem 2. If m1,m2 ∈ R and m1 ̸= m2, then the solution becomes

y = C1e
m1x + C2e

m2x

Theorem 3. If m1,m2 ∈ R and m1 = m2, then the solution becomes

y = C1e
m1x + C2xe

m1x

Theorem 4. If m1,m2 = α± iβ, then the solution becomes

y = eαx(C1 cosβx+ C2 sinβx)

Here’s an example:

Example 8.1.
2y′′ + 12y = −10y′ = 0

This is the same as
y′′ + 5y′ + 6 = 0

Solving the quadratic we get m1 = 2 and m2 = 3. By Theorem 2 we have C1e
−2x + C2e−3x

Example 8.2.
y′′ − 10y′ + 25y = 0

Some work gets us m1 = m2 = 5. Using Theorem 3, we get C1e
5x + C2xe

5x

Example 8.3.
4y′′ + 4y′ + 17y = 0

where y(0) = −1 and y′(0) = 2 Using the silly quadratic formula, we get m1,2 = −1
2 ± j2 where α = −1

2 and β = 2.
Using Theorem 4, our general solution is

y = e
−1
2 (C1 cos 2x+ C2 sin 2x)

Then, we solve for initial conditions. Using product rule, we get:

dy

dx
=

−1

2
e

−1
2 x(C1 cos 2x+ C2 sin 2x)

We can then apply initial conditions. Using y(0) = −1 on the general solution, we have −1 = C1. Plugging the
second initial condition and −1 = C1 into the equation for dy

dx we get that C2 = 3
4 .

We end up with:

y = e
−1
2 (−1 cos 2x+

3

4
sin 2x)

9



Example 8.4.
y′′ − y′ − 6y = 0

where y(0) = 4 y′(0) = −3 Using math, m1 = 3, m2 = −2. Using 2, we get the general solution is:

y = C1e
3x + C2e

−2x

We do some similar malarkey to find C1 and C2. We end up with a systems of equations:{
C1 + C2 = 4

3C1 − 2C2 = −3

We end up with C1 = 1, C2 = 3. I end up with:

y = e3x − 3e−2x

9 16-SEP-2024

9.1 Examples, again

Here’s a Bernoulli’s equation example:

Example 9.1. Give the general solution to y′ = exy2 + y. The form of Bernoulli is

y′ − y = exy2

So, n = 2. We then substitute, y = u−1, and so dy
dx = −u−2 du

dx . Then,

u−2 du

dx
− u−1 = exu−2

This is solvable using integrating factor. We get u = −1
2 e

x+Ce−x. Since y = u−1, u = y−1. So, y = (−1
2 e

x+Ce−x)−1.

Let’s do a second order ODE example.

Example 9.2.
y′′ = 36y

We get that m2 − 36 = 0, or that m = ±6. This gets us C1e
−6x + C2e

6x.

Another Bernoulli’s.

Example 9.3.
3(1− x2)y′ = 2xy(y3 − 1)

In standard Bernoulli Form, we have:

y′ +
2x

3(1− x2)
y =

2x

3(1− x2)
y4

n = 4, and so y = u
−1
3 . dy

dx = − 1
3u

−4
3

du
dx . Then, we rewrite and some small mental gymnastics. We have:

du

dx
− 2x

1− x2
u =

−2x

1− x2

Using integrating factor again, we get:
u = 1 + C(1− x2)

So, y−3 = 1 + C(1− x2)

10



10 18-SEP-24

10.1 Non-homogenous second order ODE with constant coefficients

Recall the form of a homogenous equation:

Definition 5. A homogeneous equation has the form ay′′ + by′ + cy = 0.

On the other hand, a non-homogeneous equation has the form ay′′ + by′ + cy = g(x). This has the solution as
follows:

y = yh − yp

where yh is the solution to the homogeneous equation and yp is the solution to the non-homogeneous equation (I
think it’s called the particular solution).

Here’s some basic steps:

1. Find solution to yh.

2. Based on g(x), take an educated guess using Table 3.4.1 (page 131).

3. Plug in the solution from Table 3.4.1. Solve for A, B, C, etc.

4. y = yh + yp

g(x) Trial solution yp
k (constant) A
x Ax
xn Axn +Bxn−1 + Cxn−2 + · · ·
eαx Aeαx

sin(βx) or cos(βx) A sin(βx) +B cos(βx)
x sin(βx) or x cos(βx) x(A sin(βx) +B cos(βx))
eαx sin(βx) or eαx cos(βx) eαx(A sin(βx) +B cos(βx))
xneαx (Axn +Bxn−1 + Cxn−2 + · · · )eαx

Table 1: Common forms of g(x) and their corresponding trial solutions yp

Additional Rules:

� For g(x) = g1(x) + g2(x), use yp = yp1 + yp2

� For g(x) = g1(x) · g2(x), use yp = yp1 · yp2

where yp1 and yp2 are trial solutions for g1(x) and g2(x) respectively. Here’s some more stuff.

Example 10.1. y′′ + 3y′ + 2y = 6. Roots of this is −1 and −2. That means that:

yh = C1e
−x + C2e

−2x

Let’s try yp = k. Substituting, we have: yp = a, y′p = 0 and y′′p = 0, and so 2A = 6 =⇒ A = 3. So yp = 3 We end
with y = C1e

−x + C2e
−2x + 3.

Example 10.2. Solve the non-homogeneous 2nd order ODE: y′′ + y′ − 6y = 2x
Step 1: Find the complementary solution yh
The characteristic equation is:

m2 +m− 6 = 0

Factoring this equation:
(m+ 3)(m− 2) = 0

Solving for m:
m1 = −3, m2 = 2

Therefore, the complementary solution is:

yh = C1e
−3x + C2e

2x

11



Step 2: Find the particular solution yp
From the given table, since g(x) = 2x, we use the trial solution:

yp = Ax+B

Calculating derivatives:
y′p = A

y′′p = 0

Substituting into the original ODE:
0 +A− 6(Ax+B) = 2x

Simplifying:
A− 6Ax− 6B = 2x

Equating coefficients:

x : − 6A = 2 ⇒ A = −1

3

constant : A− 6B = 0 ⇒ −1

3
− 6B = 0 ⇒ B = − 1

18

Therefore, the particular solution is:

yp = −1

3
x− 1

18

Step 3: Combine yh and yp for the general solution

y = yh + yp = C1e
−3x + C2e

2x − 1

3
x− 1

18

This is the complete general solution to the given ODE.

Example 10.3. Solve the non-homogeneous 2nd order ODE: y′′ + 4y′ + 2y = 2x2 − 3x+ 6
Step 1: Find the complementary solution yh
The characteristic equation is:

m2 + 4m+ 2 = 0

Using the quadratic formula:

m =
−4±

√
16− 8

2
= −2±

√
2

Therefore:
m1 = −2 +

√
2, m2 = −2−

√
2

The complementary solution is:

yh = C1e
(−2+

√
2)x + C2e

(−2−
√
2)x

Step 2: Find the particular solution yp
From the given table, since g(x) = 2x2 − 3x+ 6, we use the trial solution:

yp = Ax2 +Bx+ C

Calculating derivatives:
y′p = 2Ax+B

y′′p = 2A

Substituting into the original ODE:

2A+ 4(2Ax+B) + 2(Ax2 +Bx+ C) = 2x2 − 3x+ 6

Expanding and grouping terms:

2Ax2 + (8A+ 2B)x+ (2A+ 4B + 2C) = 2x2 − 3x+ 6

12



Equating coefficients:

x2 : 2A = 2 ⇒ A = 1

x : 8A+ 2B = −3 ⇒ 8 + 2B = −3 ⇒ B = −11

2

constant : 2A+ 4B + 2C = 6 ⇒ 2 + 4(−11

2
) + 2C = 6 ⇒ C = 13

Therefore, the particular solution is:

yp = x2 − 11

2
x+ 13

Step 3: Combine yh and yp for the general solution

y = yh + yp = C1e
(−2+

√
2)x + C2e

(−2−
√
2)x + x2 − 11

2
x+ 13

This is the complete general solution to the given ODE.

11 20-SEP-2024

11.1 Homogeneous Cauchy-Euler Equation

Recall the form of a homogeneous second order ODE solutions with constant coefficients, as discussed last week.
This is basically the same thing.

The Cauchy-Euler equation is of the form:

ax2y′′ + bxy′ + cy = 0

. Therefore, the characteristic equation is:

am2 + (b− a)m+ c = 0

The solution then depends on the roots.

Theorem 5. If m1,m2 ∈ R and m1 ̸= m2, then the solution becomes

y = C1x
m1 + C2x

m2

Theorem 6. If m1,m2 ∈ R and m1 = m2, then the solution becomes

y = C1x
m1 + C2x

m2 ln |x|

Theorem 7. If m1,m2 = α± iβ, then the solution becomes

y = xα(C1 cosβ ln |x|+ C2 sinβ ln |x|)

Here are the general steps:

1. Put the DE in the form ax2y′′ + bxy′ + cy = 0.

2. Find a, b, c.

3. Then, find the roots of the characteristic equation am2 + (b− a)m+ c = 0.

4. Find solution based on roots.

Example 11.1. Solve:
x2y′′ − 3xy′ + 3y = 0

It’s already in the form, which is nice. a = 1, b = −3, c = 3. This gives us:

m2 − 4m+ 3 = 0

(m− 3)(m− 1) = 0 =⇒ m = 1, 3

By Theorem 5, y = C1x+ C2x
3.

13



Example 11.2. Solve:
4x2y′′ + y = −8xy′

This is just:
4x2y′′ + 8xy′ + y = 0′

Then, a = 4, b = 8, c = 1. So, the form of the characteristic equation is

4m2 + 4m+ 1 = 0

(2m+ 1)(2m+ 1) = 0 =⇒ m =
−1

2

By Theorem 6, y = C1x
−1
2 + C2x

−1
2 ln |x|.

Example 11.3. Solve:
4x2y′′ + 17y = 0′

Then, a = 4, b = 0, c = 17. So, the form of the characteristic equation is

4m2 − 4m+ 17 = 0

By the quadratic formula, m = 1
2 ± i2 By Theorem 7, y = x

1
2 (C1 cos 2 ln |x|+ C2 sin 2 ln |x|).

Example 11.4. Solve:
x2y′′ + xy′ + 4y = 0′

Then, a = 1, b = 1, c = 4. So, the form of the characteristic equation is

m2 + 4 = 0

By the quadratic formula, m = 0± i2 By Theorem 7, y = (C1 cos 2 ln |x|+ C2 sin 2 ln |x|).

Example 11.5. Solve:
x2y′′ − 2xy′ − 4y = 0′

Then, a = 1, b = −2, c = −4. So, the form of the characteristic equation is

m2 − 3m− 4 = 0

(m− 4)(m+ 1) = 0 =⇒ m = −1, 4. By Theorem 5, y = C1x
−1 + C2x

4.

Example 11.6. Solve:
x2y′′ + 5xy′ + 4y = 0′

Then, a = 1, b = 5, c = 4. So, the form of the characteristic equation is

m2 + 4m+ 4 = 0

(m+ 2)(m+ 2) = 0 =⇒ m = −2 By Theorem 6, y = C1x
−2 + C2x

−2 ln |x|.

Example 11.7. Solve:
4x2y′′ + y = 0′

Then, a = 4, b = 0, c = 1. So, the form of the characteristic equation is

m2 − 4m+ 1 = 0

Using the quadratic formula, m = 16±
√
16−4
8 or m = 1

2 . By Theorem 6, y = C1x
1
2 + C2x

1
2 ln |x|.

14



12 23-SEP-24

12.1 Non-homogeneous Cauchy-Euler differential equation

Recall the definition of a homogeneous Cauchy-Euler differential equation.

Definition 6. The homogeneous Cauchy-Euler equation is of the form:

ax2y′′ + bxy′ + cy = 0

.

Then, non-homogeneity just adds the g(x).

Definition 7. The non-homogeneous Cauchy-Euler equation is of the form:

ax2y′′ + bxy′ + cy = g(x)

.

We start by finding the homogeneous solution of the following equation:

ax2y′′ + bxy′ + cy = 0

This is explained in the notes for 20-SEP-2024. We call the homogeneous solution Yh. Next, we rewrite Yh as:

Yh = C1y1 + C2y2

In the case of Theorem 5, the functions y1 and y2 are given by:

y1 = xm1 , y2 = xm2

In the case of Theorem 6, they are:

y1 = xm1 , y2 = xm2 lnx

In the case of Theorem 7, the solutions are:

y1 = xα cosβ lnx, y2 = xα sinβ lnx

Next, let f(x) = g(x)
ax2 . Now, we calculate the Wronskian of y1 and y2.

The Wronskian of y1 and y2 is given by:

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

We then solve for u1 and u2 using the formulas:

u1 =

∫
−y2f(x)
W

dx

u2 =

∫
y1f(x)

W
dx

After dropping the constants, we find the particular solution yp, which is:

yp = u1y1 + u2y2

Thus, the general solution is:

y = C1y1 + C2y2 + u1y1 + u2y2

Now, consider the following example:

15



Example 12.1. Solve the equation:

y′′ − 4

x
y′ = x2

The homogeneous solution is obtained by solving the associated equation:

y′′ − 4

x
y′ = 0

The solution is:

Yh = C1x
0 + C2x

5

Now, we compute the Wronskian of y1 = 1 and y2 = x5:

W (y1, y2) =

∣∣∣∣1 x5

0 5x4

∣∣∣∣ = 5x4

Next, we define f(x) = x4

ax2 = x2, and solve for u1 and u2:

u1 =

∫
−x5x2

5x2
dx = − 1

20
x4

u2 =

∫
x2

5x4
dx = −1

5
x−1

Thus, the particular solution is:

− 1

20
x4(1)−−1

5
x−1(x5)

And then it is easy to finish.

13 27-SEP-24

13.1 Variation of Parameters

Recall the definition of a homogeneous Cauchy-Euler differential equation.

Definition 8. The homogeneous Cauchy-Euler equation is of the form:

ax2y′′ + bxy′ + cy = 0

.

Then, non-homogeneity just adds the g(x).

Definition 9. The non-homogeneous Cauchy-Euler equation is of the form:

ax2y′′ + bxy′ + cy = g(x)

.

For Variation of parameters for 2nd order ODE, there is only one change: f(x) = g(x)
a , not g(x)

ax2 .
We start by finding the homogeneous solution of the following equation:

ax2y′′ + bxy′ + cy = 0

This is explained in the notes for 20-SEP-2024. We call the homogeneous solution Yh. Next, we rewrite Yh as:

Yh = C1y1 + C2y2

In the case of Theorem 5, the functions y1 and y2 are given by:

y1 = xm1 , y2 = xm2

16



In the case of Theorem 6, they are:

y1 = xm1 , y2 = xm2 lnx

In the case of Theorem 7, the solutions are:

y1 = xα cosβ lnx, y2 = xα sinβ lnx

Next, let f(x) = g(x)
ax2 . Now, we calculate the Wronskian of y1 and y2.

The Wronskian of y1 and y2 is given by:

W (y1, y2) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y2y

′
1

We then solve for u1 and u2 using the formulas:

u1 =

∫
−y2f(x)
W

dx

u2 =

∫
y1f(x)

W
dx

After dropping the constants, we find the particular solution yp, which is:

yp = u1y1 + u2y2

Thus, the general solution is:

y = C1y1 + C2y2 + u1y1 + u2y2

14 30-SEP-2024

14.1 Laplace Transform Fundamentals

We have a differential equation. We then transform the differential equation into Laplace Space, as follows:

L(f(t)) → F (s)

We then use algebra to solve for Y (s). We then take the inverse transform: that is:

L(Y (s))−1 → y(t)

The transform is defined as follows:

Definition 10. F (s) =
∫∞
0
e−stf(t)dt

Example 14.1. If f(t) = 1, find F (s).
Clearly, F (s) =

∫∞
0
e−st(1)dt. This evaluates to 1

s , with some introductory calculus.

Example 14.2. If f(t) = eat, find F (s).
Clearly, F (s) =

∫∞
0
e−st(eat)dt. This evaluates to

∫∞
0
e−(s−a)tdt. We get 1

s−a , for s > a.

People have done this work for us for a lot of functions, so we’re going to steal their efforts, in the form of a nice
little table.

Let’s do some more examples.

Example 14.3. Find the Laplace transform of f(t) = t3 + 3t2 + 2. Using 2, we can split up the three terms into:

3!

s3+1
+ 3

2!

s2+1
+

2

s

So, F (s) = 6
s4 + 6

s3 + 2
s .

Example 14.4. Find the Laplace transform of f(t) = 4t2 − 5 sin 3t Using 2, we can split up the two terms into:

4
2!

s2+1
+−5

3

s2 + 32

So, F (s) = 8
s3 − 15

s2+9 .
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Function Laplace Transform
f(t) = 1 F (s) = 1

s

f(t) = tn F (s) = n!
sn+1

f(t) = eat F (s) = 1
s−a

f(t) = sin(bt) F (s) = b
s2+b2

f(t) = cos(bt) F (s) = s
s2+b2

f(t) = sinh(bt) F (s) = b
s2−b2

f(t) = cosh(bt) F (s) = s
s2−b2

f(t) = teat F (s) = 1
(s−a)2

f(t) = u(t− a) F (s) = e−as

s

f(t) = δ(t− a) F (s) = e−as

y(t) Y (s)
dy
dt sY (s)− y(0)
d2y
dt2 s2Y (s)− sy(0)− dy

dt (0)∫ t

0
y(τ)dτ Y (s)

s

f(t) = eat sin(bt) F (s) = b
(s−a)2+b2

f(t) = eat cos(bt) F (s) = s−a
(s−a)2+b2

Table 2: Laplace Transform Table

15 02-OCT-2024

15.1 Partial Fraction Expansion

Recall the Laplace Table 2.
We begin with an example.

Example 15.1.
f(t) = 4 sin 2t+ 3 cos 6t+ 4e2t

Using 2, we have

F (s) = 4 · 2

s2 + 4
+ 3 · s

s2 + 36
+ 4 · 1

s− 2
.

Another example:

Example 15.2.
f(t) = 10 + 2t4

Using 2, we have

F (s) = 10 · 1
s
+ 2 · 4!

s5
=

10

s
+

48

s5

.

Now, let’s take the inverse!

Example 15.3.

F (s) =
5s

s2 + 25
+

8

s2 + 4

This is the same as:

5
s

s2 + 25
+ 4

2

s2 + 4

which evaluates to f(t) = 5 cos 5t+ 4 sin 2t.

Example 15.4.

F (s) =
2

s3
+

1

s+ 9
+

5

s

This is f(t) = t2 − e−9t + 5.

18



Now, let’s talk about examples with multiple terms multiplied by each other in the denominator. This requires
Partial Fraction Expansion. You may remember similar things in Calculus. Note that fractions of the form:

F (s) =
N(s)

(s+ a)(s+ b)n(s2 + c)

evaluate to:
A

s+ a
+

B1

s+ b
+

B2

(s+ b)2
+ · · ·+ Bn

(s+ b)n
+
D1s+D2

s2 + c

So, we have a somewhat decent method to evaluate Partial Fraction Expansion.

1. Multiply both sides by the denominator

2. Next, solve by either substitution or equating coefficients

3. Then, use the Laplace Transform to find the inverse of components.

Example 15.5.

F (s) =
6s2 + 50

(s+ 3)(s2 + 4)

Using Partial Fraction Expansion, this is of the form:

A

s+ 3
+
Bs+ C

s2 + 4

Next, we need to find A,B,C! Let’s use substitution.

6s2 + 50 = A(s2 + 4) + (Bs+ C)(s+ 3)

Evaluating at s = −3, which is one of the zeros, we find that A = 104
13 = 8. You can verify it for yourself!

How can we find B and C? Let’s just use equating coefficients, what we should have done at the start.

6s2 + 50 = As2 + 4A+Bs2 + Cs+ 3Bs+ 3C

Note that this means:
6 = A+B

0 = 3B + C

5 = 4A+ 3C

This can just be reducing the matrix:  1 1 0 6
0 3 1 0
4 0 3 5


 1 0 0 8

0 1 0 −2
0 0 1 6


Or A = 8, B = −2, C = 6. So,

8

s+ 3
+

−2s

s2 + 4
+

6

s2 + 4

Taking the inverse Laplace Transform,

f(t) = 8e−3t − 2 cos 2t+ 3 sin 2t
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16 07-OCT-2024

17 09-OCT-2024

17.1 Translation on the t-axis

Recall the unit step function.

Definition 11 (Unit step function). The unit step function u(t) is defined as:

u(t) =

{
0 if t < 0,

1 if t ≥ 0.

t

u(t)
1

0

Now consider the case where f(t) = g(t)u(t − a), where u(t − a) is the shifted unit step function. The Laplace
transform of f(t) is:

F (s) = e−as + L{g(t− a)}.

The steps to evaluate this are as follows:

1. Identify g(t) and a

2. Replace t with t− a to get g(t− a).

3. Expand g(t− a)

4. Take the Laplace transform. That is, L{g(t− a)}

5. F (s) = e−as L{g(t− a)}

Example 17.1. Evaluate f(t) = u(t− 2).
Note that g(t) = 1, and a = 2. Then, g(t− 2) = 1. We get L{1} = 1

s , or F (s) = e−2s 1
s .

Example 17.2. Evaluate f(t) = t2u(t− 2).
Note that g(t) = t2, and a = 2. Then, g(t − 2) = (t − 2)2. Evaluating, g(t − 2) = t2 − 4t + 4. So, Taking the

Laplace Transform, we have L{t2 − 4t+ 4} = 2
s3 − 4

s2 + 4
s , or F (s) = e−2s[ 2

s3 − 4
s2 + 4

s ].

Example 17.3. Evaluate f(t) = 2− 3u(t− 2) + u(t− 3).

We get F (s) = 2(1s )− 3 e−2s

s + e−3s

s .

Example 17.4. Evaluate f(t) = 4 cos tu(t− π).
Recall that cos t− π = − cos t. This will help us a lot in the future.
Now, we have a = π, g(t) = 4 cos t. Then, g(t− π) = 4 cos(t− π) = −4 cos t. Knowing that L{−4 cos t} = 4s

s2+1 ,

we get F (s) = −e−πs 4s
s2+1 .

Example 17.5. Evaluate for Y (s): y′ + y = 4 cos tu(t− π), given initial conditions y(0) = 0.

sY − 0 + Y = e−πs 4s

s2 + 1

Y (s+ 1) = −e−πs 4s

s2 + 1

Y (s) =
−e−πs 4s

s2+1

s+ 1
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But how do we find Y (t)? We use the Second Translation Theorem.

Definition 12. The Second Translation Theorem in Laplace Transforms is as follows:
If

L{f(t)} = F (s),

then
L{f(t− a)u(t− a)} = e−asF (s),

where u(t− a) is the unit step function that shifts the function by a units in time.

t

f(t)

f(t) f(t− a)

t = a

Original f(t) Shifted f(t− a)

0

Example 17.6. f(t) = (t− 1)u(t− 1). Find F (s). Through some standard malarkey, F (s) = e−s 1
s2 .

Example 17.7. F (s) = e−2s 1
s3

18 23-OCT-24

18.1 Dirac Delta Function examples

Example 18.1. Solve the differential equation with initial conditions y(0) = 0 and y′(0) = 0:

y′′ + 16y = δ(t− 2π)

where δ(t− 2π) is the Dirac delta function centered at t = 2π.
Solution:
The differential equation is a second-order linear equation with constant coefficients, and the non-homogeneous

term is the Dirac delta function. The general solution can be found using the Laplace transform method.
First, take the Laplace transform of both sides:

L{y′′ + 16y} = L{δ(t− 2π)}

Using the Laplace transform properties:
s2Y (s) + 16Y (s) = e−2πs

Solving for Y (s):

Y (s) =
e−2πs

s2 + 16

Taking the inverse Laplace transform:

y(t) =
1

4
sin(4(t− 2π))u(t− 2π)

where u(t− 2π) is the unit step function that shifts the response to start at t = 2π.

Example 18.2. Solve the differential equation with initial conditions y(0) = 0 and y′(0) = 0:

y′′ + y = δ(t− 2π) + δ(t+ 4π)

where δ(t− 2π) and δ(t+ 4π) are Dirac delta functions centered at t = 2π and t = −4π, respectively.
Solution:
First, take the Laplace transform of both sides of the equation:

L{y′′ + y} = L{δ(t− 2π)}+ L{δ(t+ 4π)}

21



Using the properties of the Laplace transform, we get:

s2Y (s) + Y (s) = e−2πs + e4πs

Simplifying:

Y (s) =
e−2πs + e4πs

s2 + 1

Taking the inverse Laplace transform gives:

y(t) = sin(t− 2π)u(t− 2π) + sin(t+ 4π)u(t+ 4π)

where u(t− 2π) and u(t+ 4π) are unit step functions that shift the sine responses to start at t = 2π and t = −4π,
respectively.
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