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1.1 Order, Linear, and PDE vs ODE

Not notated. Will add when I have time.

2 28-AUG-24

2.1 Miscellaneous
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Prof is Phillip Hutton. There are several ways to take the quiz. Quiz, office hours, etc. you can also take it in class.

All quiz get one page cheat sheet.

2.2 Verifying solutions using initial conditions

To verify potential solutions, plug into the original diffeq. Use algebra (ha!) to make LHS = RHS. On the other

hand, we can simply plug in various numbers for  and check for equivalency. Obviously, check for domains.

Example 2.1.

Potential Solution:

Then,

Then, plug into the original diffeq. We have:

or that

as desired.

Example 2.2.

Potential Solution 1:

Potential Solution 2:

Case 1:

y = ay?
L 4
Y Ex
dy 1 3
dr 4
1 1
Zx?’ =z- (Ex4)%
1 1
. B .

d
(y-2)L=y—z+8

dx
y:2x+4\/m
y:x+4\/m
dy

Yoy ozt+)T
gy~ 22z +2)



Then, plug into the original diffeq. We have:

Qr+4vVr+2—2)2+2@+2)2)=20+4Vz +2—2+8
Simplifying,
(z+4Vz+2)2+2x+2)2)=z+8+4Vz +2

Consider the case that x = 0. Then,

(AV2)(2+2(2)7) =8+ 4v2
8V2+8=28+4V2
or that

8v2 = 42

which is clearly false.
Solution 2 works. You plug it in like above, but end with a true statement.

2.3 IVPs

Solving a diffeq yields a general solution with unknowns. Using initial values we can then solve for said unknowns.
For n unknowns, we need n initial values.
Let’s do an example!

Example 2.3. 3y’ =y, where y(0) = 3. We know our general solution is
y=Ce"

but what is C? clearly, since y(0) = 3, and at © = 0, y = ¢, 3 = C. Thus, the equation is really

y = 3e”
Example 2.4. y' + 2zy? = 0, where y(0) = 1. The general solution to this is y = H% Plugging in at x = 0, we
have C' = —1. Final solution is y = ﬁ
Example 2.5. 2" 4 162 = 0, where z(5) = —2, 2/(§) = 1. The general solution is

x = Cq cosdt + Cqysin 4t

You plug in twice, you get Cy = —2 and after the second step you get Cy = i. Then plug in to general equation.
Yay.
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3.1 Integrating Factor

This is the most fun Mcllwain review. When do we use this?

Theorem 1. If you can write a differential equation to be of the form % + p(x)y = f(x), you are eligible to use
Integrating Factor.

The algorithm for solving goes something like this:
ot plo)y = f()
dx
Multiply both sides by:
If — ef p(z) dz

You get:

d
6fp(z) dx% + efp(z) dzp(x)y _ efp(:v) dzf(x)



Using reverse chain rule:

el Py = o 2 ()

Integrating both sides, we get:

This gets us:

(z) = [ el @) de f(g)
Y oS P@) dz
Example 3.1.
dy
=
This seems separable, and it is. But if you were to use integrating factor, it goes like this:
dy
Note that this makes p(t) = —5
y = Ce™
Example 3.2.
dy _ 3z
dx ty=e

Note that this makes p(z) = 1, f(z) = 3°

@— =€
1
T 4x
== C
e’y 46 +
1l +C
Y= o

or:
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We have a quiz lol. Three questions, about 20-25 minutes.

4.1 Separation of Variables

Definition 1 (separable). A differential equation is separable if you can put it into the form g—g = f(z)h(y), where
f h are functions.

The steps to solving them are as follows:

W~ fyhiy)

dy
h(y)

then, solve. Let’s check for separability of some cases:

= f(z)dzx

Example 4.1.
dy
-~ —y=cosx
dz Y

dy
— =CcosST + Yy
dx

This does not satisfy the form specified in the definition, so it is not separable.



Example 4.2.

d
ﬁ _ x2y465m—3y
We can rewrite as: p
= (@) (y'e ™)
This is separable, as it satisfies the above form.
Now, let’s solve one:
Example 4.3.
(1—-2x)dy = —ydz
where y(0) =5
Rewriting, we get:
1 -1
1 dr = —dy
=z y

Integrating, we get:

—Inl—-z=—-lny+C

When y(0) =5, we have 0 = —In5+ C, so C = 1n5 So,

—Inl—2z=—-lny+1Inbd

and then:
Iny=Inl—2+1Inb
Exponentiating,
elny — eln l1—z+Inb5

y=>5(1—2x)
Example 4.4.

1dy

-——=1-x

y dx

where y(0) = 2 The joke is you don’t actually need to use separation to do this. But you can.

5 06-SEP-24

5.1 Exact Equations

Exact equations are a specific form of differential equation.

Definition 2. For f(z,y) = k, where k is a constant, then df = %dl‘ + %dy =0.

Then, let us define M (x,y) = % and N(z,y) = g—’;. So, M(x,y)dz + N(z,y)dy = 0. Differentiating, we get:

dm  &f

d7y dxdy

Definition 3. If M (z,y)dz + N(z,y)dy =0 and ‘% = dffy

dN

da

— dx’

= 4 then%:Mandg—f:N.
y

This gives us a general algorithm for solving differential equations of some classes:

1. Put the DE into form M(x,y)dx + N(z,y)dy =0
2. Then, identify M (x,y) and N(x,y)

3. Then, test for exactness: that is, d—lg

= 2N If true, we have an exact equation.
d dz ’

4. From % = M, we have df = Mdzx, which, when integrating, gets f(z,y) = g(x,y) + h(y).



5. Similarly, from % = N, we have % = Z—Z + Z’—Z = N, which, when integrating, gets f(z,y) = g(z,y) + h(y).

Think of h(y) as a constant term.
6. This gets us h(y) = [N — g—zdy. Then we substitute h(y) into f(z,y) and set f(z,y) = C.
I think an example may help more.

Example 5.1. —2rydx = (2 — 1)dy. Set up involves rewriting into the form, which gives us:
2zydx + (22 — 1)dy = 0

where M = 2xy, N = 22 — 1. Then, we check if the equation is exact, which requires us to take the partials

of both sides, that is % and %. Since they are both 2z, we’re good to continue. Now, % 2zy, and then

f(z,y) = [2zydz. We get f(z,y) = 2>y + h(y). We now do the same thing for % = N. That is, % = N. That is,
2+ d—y =z2-1
, and so % = —1. Then, [dh = — [dy, and so h(y) = —y + C. Setting f(z,y) = C, we have z?y —y = C.

Another example.

Example 5.2. (22 + 22y + y?)dz + (22y + 22 — 1)dy = 0 There’s a cheeky sum of squares method for this.
M = (2% 4+ 22y + y?) and N = (2xy + 22 — 1). Doing the test, we get % =2z + 2y = 9 This is true, by the

wonders of the commutative property. Then, % = M = 2?4+ 22y + 9% Integrating, we get some silly little equation:

1
flz,y) = gxg + 2%y + 2y® + h(y)

. Then, if % = N, we can solve for h(y), as then diyf(x, y) = x?y+2zy+—1, and so Z—Z = —1, and then h(y) = —y+C.
And then we set f(z,y) = C.

Another one. Cue DJ Khaled.

Example 5.3. (23 + cosy + %)dy = (% — 3z%y)dz. Initially, N is on the left, M is on the right. More accurately,

. 1
(% — 32%y)dx — (23 + cosy + E)dy =0

% = L% — 322. This is the same as %. Practice these differentiations, kids. Therefore, this is an exact equation.
% =M = f(z,y) = =L — 2%y + h(y). Similarly, j—’; = N and j—’; == 234+ Z—Z = — (23 + cosy + %). Then,

solve for h(y) and continue, and you’re done.

6 09-SEP-24

6.1 Separation of Variables, but more

Example 6.1. Find the general solution to the differential equation:
e Wdy = 3% dx

1 1
_56—21/ _ ge?m +C

Multiplying by —2, we have:

-2
-2y _ 3z C
e —3 e’ +

Taking natural logs:

2
Ine™? =1In ?63”” +C

-2
—2y=1In ?63”’ +C



6.2 Exact equations, but more
Example 6.2. Find the general solution of:
(siny — ysinz)dxr = —(cosx + x cosy)dx

First, get it into the form:
(siny — ysinz)dx + (cosz + z cosy)dy = 0

Note that M, = cosy —sinz and N; = —sinx + cosy. It is exact.
/Mda? = xsiny + coszy

Therefore, ¥ (z,y) = xsiny + coszy + h(y). Then, we take the partial again:
P(z,y), = xcosy + cosx + h'(y)

Note that N = cosx + x cosy and so h'(y) = 0 We get: xsiny + cosay = C.

7 11-SEP-24

7.1 Bernoulli Equations
So what is Bernoulli’s equation?
Definition 4. Bernoulli equations are of the form:

Yt pe)y = Sy

Notice that this is nonlinear. So we have to make it linear, to make our life easier.
Here’s the steps:
1. Put the differential equation in the form % + p(x)y = f(x)y™, and then identify n.

2. Then, substitute y = uﬁ, which implies that % = ﬁuﬁfl%.

3. This will be an ODE. We then solve for u using either separation of variables, integrating factor, or exact
equations. It’s usually integrating factor.

4. Then, once we solve for u, substitute back u = y'~", and then solve for y(z).

Example 7.1. Let’s solve:
dy

2,2
T—= =z
A +y Y
The first step is easy. To put it in the form % + p(z)y = f(z)y™, we divide by x, which gives us:
d 1
Lt oy =ay?
der =z

dy du
-1 -2
= U _ - J—
Y dx dx
Continuing our evaluation, we get:
du 11
. —2au L —1)2
dr  Tu z(u™)
which gets us
du 1
— ——u=-z
de

This is easy to solve using integrating factor. Note that p(z) = _71 We end up with u(z) = —2? — Cz. (Note that
I would always write +Cz here, but I'm following the professor’s directive). Plugging it back in, we have u = y~ 1.

We end up with y = (—2% — Cx)~%



Another one.

Example 7.2. Let’s solve:

We divide by z? now, which gives us:

So, n = 4. Then, we substitute for u:

u,% — dy -1 gdu
= — = — —_—
Y x 3 dz
This gives us
-1 _adu 2 _1 3 -4
J— 3 — — — 3 = —u’3
3 dr = x?
which gets us
du 6 9
ke P
dr =z x?
Integrating factor gets us u(z) = C/x% — 2. Since u(z) =y =3, y=3
9
= (C 6 _ Y \3
y=(0/a® - )
Example 7.3. Let’s solve:
222 2zy = 3y*
dx

We divide by 22 now, which gives us:

dr “Yy=—=3Yy
T x x
So, n = 4. Then, we substitute for u:
,% — dy -1 4 du
=u = = —u 33—
Y i 3 dx
This gives us
-1 4 du 2 _1 3 —4
J— 3 — — — 3 = —u’3
3 dr = x?
which gets us
du 6 9
de = 22
Integrating factor gets us u(z) = C/x% — 2. Since u(z) =y =3, y=3
9 1
=(C/z5 - )=
y=(Cf* - )
Another one.
Example 7.4. Let’s solve:
d
x—y +y—y =0
dx
Step 1:
dy 1 1 .,
de  z7 4
So, n = —2. Substitute for u:
by 1, gdu
4 de 3 dx
Then,
1 _—2du 1 1 =2
—u — 4+ —u3 = —u’s
3 dr =z T
which gets us
du 3 3
dr  z
Integrating factor gets us u(zx) = z% +1. So y? = m% + 1, which gets us:
c 1
y= (ﬁ +1)°

= C/z% — 2, which gets us:

= C/z% — 2, which gets us:
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8.1 Second order ODEs with constant coefficients

The form of this equation is:

dy? dy

where a, b, ¢ are constants.
Here are the general steps:

1. Put the DE into the form ay” + by’ + ¢ = 0, and then identify a, b, ¢
2. Then, find the roots to the characteristic equation am? + bm + ¢ = 0, using the quadratic equation.
3. Your solution depends on your solutions to this characteristic equation mj, ms.

Theorem 2. If mj,ms € R and my1 # may, then the solution becomes
y = Cre™T + Che™>"
Theorem 3. If mi,mo € R and my = mo, then the solution becomes
y = C1e™T + Coze™”
Theorem 4. If mi,mo = a £ i, then the solution becomes
y = e**(C cos Bz + Cosin )
Here’s an example:

Example 8.1.
2y" + 12y = —10y' =0

This is the same as
y' +5y +6=0

Solving the quadratic we get m; = 2 and my = 3. By Theorem [2| we have Cie™2% 4 C2e 3%

Example 8.2.
y" — 10y’ +25y =0

Some work gets us m; = my = 5. Using Theorem [3| we get Ce?® + Coze®®

Example 8.3.
4y + 4y +17y =0

where y(0) = —1 and y'(0) = 2 Using the silly quadratic formula, we get m; o = _71 + j2 where a = _71 and 8 = 2.
Using Theorem [4] our general solution is

y= e (C1 cos 2z + Co sin 2z)

Then, we solve for initial conditions. Using product rule, we get:

d -1 -
% = 767196(01 cos 2z + Cy sin 2x)
We can then apply initial conditions. Using y(0) = —1 on the general solution, we have —1 = C4. Plugging the

second initial condition and —1 = C} into the equation for g—z we get that Cy = %.
We end up with:

1 3
y=-e2 (—1lcos2x + 15111237)



Example 8.4.
y'—y —6y=0
where y(0) = 4 y/(0) = —3 Using math, m; = 3, my = —2. Using[2] we get the general solution is:
y = C1% + Coe™*

We do some similar malarkey to find C; and Cs. We end up with a systems of equations:

Ci+0Cy=4
3CT — 205 = -3

We end up with C; =1, Cy = 3. T end up with:

Y= 6337 _ 36—23:

9 16-SEP-2024

9.1 Examples, again
Here’s a Bernoulli’s equation example:

Example 9.1. Give the general solution to v’ = e®y? +y. The form of Bernoulli is

y —y=e"y’
So, n = 2. We then substitute, y = !, and so g—g = —u_QZ—g. Then,
du
-2 -1 z, —2
u i — =e"u
dx

This is solvable using integrating factor. We get u = %e“—i—Ce“’“. Sincey =u"',u=y"t. So,y= (%ex—kCe_x)_l.
Let’s do a second order ODE example.

Example 9.2.
y// — 36y

We get that m? — 36 = 0, or that m = 46. This gets us C1 e~ + Cpe5%,
Another Bernoulli’s.

Example 9.3.
3(1 — 2%y’ = 2zy(y® - 1)
In standard Bernoulli Form, we have:
2z _ 2z 4
31—22)7 ~ 3(1-22)"

Y+

=2 du

—1 . .
n=4,andsoy=u7 . %uT o Then, we rewrite and some small mental gymnastics. We have:

du 2x -2
o u =
de 1—22 1— 22

Using integrating factor again, we get:
u=14+C(1 —z?)

So,y 3 =1+C(1—2?)

10
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10.1 Non-homogenous second order ODE with constant coefficients
Recall the form of a homogenous equation:
Definition 5. A homogeneous equation has the form ay” 4+ by’ 4+ cy = 0.

On the other hand, a non-homogeneous equation has the form ay” + by’ + cy = g(x). This has the solution as
follows:
Y=Y —Yp
where y;, is the solution to the homogeneous equation and y, is the solution to the non-homogeneous equation (I
think it’s called the particular solution).
Here’s some basic steps:

1. Find solution to y,.
2. Based on g(x), take an educated guess using Table 3.4.1 (page 131).
3. Plug in the solution from Table 3.4.1. Solve for A, B, C, etc.

L Yy=yntyp
g(x) Trial solution y,
k (constant) A
x Az
™ Az" + Bt 4 Ca" 2 4 -
sin(fx) or cos(fx) Asin(Bx) + B cos(Bx)
xsin(Bz) or x cos(Sr) x(Asin(fx) + B cos(Bz))
e sin(Bx) or e*® cos(Bzx) | e**(Asin(Bz) + B cos(fx))
xneax (Al,n + an—l + Cl‘n_2 R )eaz

Table 1: Common forms of g(x) and their corresponding trial solutions y,

Additional Rules:

o For g(z) = g1(x) + g2(x), use yp = yp1 + Yp2

o For g(x) = g1(x) - g2(2), use yp = Yp1 - Yp2
where y,1 and y,o are trial solutions for g1 (x) and g2(z) respectively. Here’s some more stuff.
Example 10.1. y” + 3y’ + 2y = 6. Roots of this is —1 and —2. That means that:

yp = Cre® + Che 2"

Let’s try y, = k. Substituting, we have: y, = a, y;, =0 and y, =0, and so 24 =6 = A =3. So y, =3 We end
with y = Cie™® + Coe 2% 4+ 3.

Example 10.2. Solve the non-homogeneous 2nd order ODE: 3" + ¢/ — 6y = 2z
Step 1: Find the complementary solution yj
The characteristic equation is:
m? +m—6=0

Factoring this equation:
(m+3)(m—-2)=0

Solving for m:
my = _37 ma =

Therefore, the complementary solution is:

yp = 016731 4 0262&0

11



Step 2: Find the particular solution vy,
From the given table, since g(xz) = 2z, we use the trial solution:

yp =Ax+ B
Calculating derivatives:
yp=A
yp =0

Substituting into the original ODE:
0+A—-6(Axz+ B) =2z

Simplifying:
A—6Ax —6B =2z

Equating coefficients:

xr: —6A=2 = A:f%

constant: A—-6B=0 = —%76B:0 = BZiliS

Therefore, the particular solution is:

1 1
-l =
T
Step 3: Combine y;, and y, for the general solution
3 . 1 1
?J:thpr:Ole‘3 +C2€2 *5517*1*8

This is the complete general solution to the given ODE.

Example 10.3. Solve the non-homogeneous 2nd order ODE: 4" + 4y’ 4+ 2y = 222 — 32+ 6
Step 1: Find the complementary solution yj
The characteristic equation is:
m? +4m+2=0

Using the quadratic formula:
—44++/16 —
m = % =242
Therefore:
m1:—2+\@, m2:727\/§

The complementary solution is:
yn = C’le(*%ﬂ)x + 026(727\/5)90

Step 2: Find the particular solution vy,
From the given table, since g(x) = 22? — 3z + 6, we use the trial solution:

yp:Ax2+Bx+C

Calculating derivatives:
y, =2Az + B

y, =24
Substituting into the original ODE:

2A+4(2Az + B) + 2(A2* + Bx + C) = 22% — 32+ 6
Expanding and grouping terms:

2Ax? + (8A +2B)x + (2A + 4B +20) = 22* — 32+ 6

12



Equating coefficients:

2 24=2 = A=1
i
2

11
constant : 244+4B+4+2C =6 = 2+4(73)+QC:6 = C=13

z: 8A+2B=-3 = 842B=-3 = B=

Therefore, the particular solution is:

11
yp:xz—?x—i—l?)

Step 3: Combine y;, and y, for the general solution
11
Y=Yy +yp= 016(72+\/§)I + 026(727\/§)z + % — ?1‘ + 13

This is the complete general solution to the given ODE.

11 20-SEP-2024

11.1 Homogeneous Cauchy-Euler Equation

Recall the form of a homogeneous second order ODE solutions with constant coefficients, as discussed last week.
This is basically the same thing.
The Cauchy-Euler equation is of the form:

az?y” +bxy' +cy=0
. Therefore, the characteristic equation is:
am® 4+ (b—a)ym+c=0
The solution then depends on the roots.
Theorem 5. If mi,mo € R and my # mo, then the solution becomes
y = Crz™ + Coz™?
Theorem 6. If mi,ms € R and m; = my, then the solution becomes
y = Cra™ + Cox™? In|z|
Theorem 7. If mi,mo = a £ i, then the solution becomes
y =2%(Cycosf1ln|z| + Cysin f1n |z)
Here are the general steps:

1. Put the DE in the form az?y” + bxy’ + cy = 0.

[\

. Find a, b, c.
3. Then, find the roots of the characteristic equation am? + (b — a)m + ¢ = 0.
4. Find solution based on roots.

Example 11.1. Solve:
2%y —3xy’ +3y =0

It’s already in the form, which is nice. a = 1,b = —3, ¢ = 3. This gives us:
m? —4m+3=0
(m-3)(m—-1=0 = m=1,3
By Theorem |5, y = Cix + Coa®.

13



Example 11.2. Solve:
4m2y” +y= —Sxy'

This is just:
4$2y" +8xy' +y= O/

Then, a =4,b = 8,c = 1. So, the form of the characteristic equation is
4m? +4m+1=0

-1
2m+1)2m+1)=0 = m=—

By Theorem@ y=Czz +Cor? In |].

Example 11.3. Solve:
42y + 17y =0/

Then, a =4,b = 0,c = 17. So, the form of the characteristic equation is

4m? —4m +17=0
By the quadratic formula, m = 1 + 42 By Theorem 7] y = 22 (Cy cos2In |z] 4+ Cosin 21n |z)).
Example 11.4. Solve:

ny// +xy/ +4y — 0/
Then, a = 1,b=1,c = 4. So, the form of the characteristic equation is

m?+4=0

By the quadratic formula, m = 0 & i2 By Theorem [} y = (C; cos2In |z| + C3 sin 21n |z|).

Example 11.5. Solve:
22y — 2y — 4y =0

Then, a = 1,b = —2,¢ = —4. So, the form of the characteristic equation is
m?—3m—4=0
(m—4)(m+1)=0 = m = —1,4. By Theorem 5| y = C12~! + Caz*.

Example 11.6. Solve:
ny// + 5xy/ +4y — 0/

Then, a =1,b =5,c = 4. So, the form of the characteristic equation is
m?+4m+4=0
(m+2)(m+2)=0 = m=-2By Theorem|§|7 y=Crz™2 + Coz?In|z|.
Example 11.7. Solve:
4y 4y =0
Then, a =4,b=0,c = 1. So, the form of the characteristic equation is

m2—4m+1=0

Using the quadratic formula, m = 6£v16=4 V81674 or m= % By Theorem |§|, Y= Ciz? + Cyzz In |].

14
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12.1 Non-homogeneous Cauchy-Euler differential equation
Recall the definition of a homogeneous Cauchy-Euler differential equation.

Definition 6. The homogeneous Cauchy-FEuler equation is of the form:

azy" +bxy' +cy =0

Then, non-homogeneity just adds the g(x).

Definition 7. The non-homogeneous Cauchy-Euler equation is of the form:

az*y" +bxy' + cy = g(x)

We start by finding the homogeneous solution of the following equation:

az?y” +bry' +cy=0
This is explained in the notes for 20-SEP-2024. We call the homogeneous solution Y;. Next, we rewrite Y}, as:

Yy = Ciy1 + Cayo
In the case of Theorem [5] the functions y; and y, are given by:

y1=a™, yo=2a"

In the case of Theorem [6] they are:

yr=z", yp=z"Inw

In the case of Theorem [7] the solutions are:

y1 =x%cosfBlnx, gy =x2%sinflnzx

Next, let f(z) = 9(2) Now, we calculate the Wronskian of y; and ys.

ax? *

The Wronskian of y; and ys is given by:

W(yl,yz) = y/l y? = ylyé - yzy'l
Y Y2
We then solve for u; and us using the formulas:
— T
Uy = 7:%[];( ) dx
T
u2 :/Lllf)‘[ﬁ )dl‘

After dropping the constants, we find the particular solution y,, which is:

Yp = u1y1 + U2y2

Thus, the general solution is:

y = Cry1 + Cayz + ury1 + uay2

Now, consider the following example:

15



Example 12.1. Solve the equation:
" 4 / 2
y -y =z
x
The homogeneous solution is obtained by solving the associated equation:

4
y//_iy/:()
X

The solution is:

Y, = Cll’o -+ CQ.’tS

Now, we compute the Wronskian of y; = 1 and y» = z°:

1 25

W(ylayQ) = ’O 51,4 = 5$4

Next, we define f(z) = % = 22, and solve for u; and us:

—z52? 1
Uy = / 5(E2 dx = —%x

Thus, the particular solution is:

And then it is easy to finish.

13 27-SEP-24

13.1 Variation of Parameters
Recall the definition of a homogeneous Cauchy-Euler differential equation.

Definition 8. The homogeneous Cauchy-Euler equation is of the form:

az?y” +bxy' +cy=0

Then, non-homogeneity just adds the g(x).

Definition 9. The non-homogeneous Cauchy-Euler equation is of the form:

az®y” + bay' + cy = g(x)

g(x)

g(z)
a ax? "

9 not

For Variation of parameters for 2nd order ODE, there is only one change: f(x)
We start by finding the homogeneous solution of the following equation:

azy" + bxy' +cy =0

This is explained in the notes for 20-SEP-2024. We call the homogeneous solution Y}. Next, we rewrite Y}, as:

Y = Ciyr + Caye
In the case of Theorem [5] the functions y; and yo are given by:

y1=2™, yp=2a"

16



In the case of Theorem [6] they are:

y1 =z, yy=a"™Inzx

In the case of Theorem m the solutions are:

y1 =x%cosfBlnzx, gy =x%sinflnzx

Next, let f(z) = . Now, we calculate the Wronskian of ; and ys.
The Wronskian of y1 and yo is given by:

W(yr,y2) = |10 21 = g1yl — you
LATCD)
We then solve for u; and us using the formulas:
wy — yva[; (@) 4.

Uy = / y11]j[§36) d

After dropping the constants, we find the particular solution y,, which is:

Yp = U1Y1 + U2Y2

Thus, the general solution is:

y = Chy1 + Coya + ury1 + u2yo

14 30-SEP-2024

14.1 Laplace Transform Fundamentals

We have a differential equation. We then transform the differential equation into Laplace Space, as follows:

L(f(t) = F(s)
We then use algebra to solve for Y (s). We then take the inverse transform: that is:
LY ()™ = y(t)
The transform is defined as follows:
Definition 10. F(s) = [ e~ f(t)

Example 14.1. If f( ) =1, find F(s)
Clearly, F(s) = [, e*!(1)dt. This evaluates to 1, with some introductory calculus.

Example 14. 2 If f(t) = e, find F(s).
Clearly, F(s) =[5 e™*!( ‘” )dt. This evaluates to [

People have done this work for us for a lot of functions, so we’re going to steal their efforts, in the form of a nice
little table.
Let’s do some more examples.

Example 14.3. Find the Laplace transform of f(t) = t> + 3t? + 2. Using[2} we can split up the three terms into:

3! 3 2! 2
R TS
So, F(s) =&+ 5+ 2.
Example 14.4. Find the Laplace transform of f(t) = 4t> — 5sin 3t Using [2, we can split up the two terms into:

2! 3

432“ 0 + 32

So, F(s) = & — A5

17



Function Laplace Transform
f)=1 F(s) =+
f(t) =t" F(s) = 25
ft) = e F(s) = 4,
f(t) = sin(bt) F(s) = oo
f(t) = cos(bt) F(s) = 24
f(t) = sinh(bt) F(s) s2fb2
f(t) = cosh(bt) F(s) = 2%
f(t) = te™ F(S) = (s_la)z
J(t) = ult—a) Fs) = =
f(®)=46(t—a) F(s)=e9®
y(t) Y(s)
& V)~ 4(0)
prea s”Y (s) = sy(0) — F(0)
Jy(T)dT Y(s)
F(t) = e sin(bt) F(s) = (DT
f(t) = e cos(bt) F(s) = o=

Table 2: Laplace Transform Table

15 02-0CT-2024

15.1 Partial Fraction Expansion

Recall the Laplace Table
We begin with an example.

Example 15.1.
f(t) = 4sin 2t + 3 cos 6t + 4e?*

Using [2] we have
2 s 1
F(s)=4-———+3- 4.
W=t Tt et i

Another example:

Example 15.2.
f(t) =10+ 2t*

Using [2] we have

1 4! 10 48
F(s)=10-—-+2- — = — + —
(s) s + s s + s°
Now, let’s take the inverse!
Example 15.3.
(s) = 5s n 8
52425 s24+4
This is the same as:
S 2

which evaluates to f(t) = 5cos 5t + 4sin 2¢.

Example 15.4.

This is f(t) = > —e % +5.

18



Now, let’s talk about examples with multiple terms multiplied by each other in the denominator. This requires
Partial Fraction Expansion. You may remember similar things in Calculus. Note that fractions of the form:

N(s)
F =
) = TG0
evaluate to: 4 B B B Dis+D
1 2 n 1S 2
s+a+s+b+(s+b)2+'”+(s+b)” s2+4c

So, we have a somewhat decent method to evaluate Partial Fraction Expansion.
1. Multiply both sides by the denominator
2. Next, solve by either substitution or equating coeflicients
3. Then, use the Laplace Transform to find the inverse of components.

Example 15.5.
652 + 50

o= a9

Using Partial Fraction Expansion, this is of the form:

A +B5+C'
s+3 s24+4

Next, we need to find A, B, C'! Let’s use substitution.
652 +50 = A(s® +4) + (Bs + O)(s + 3)

Evaluating at s = —3, which is one of the zeros, we find that A = % = 8. You can verify it for yourself!

How can we find B and C?7 Let’s just use equating coefficients, what we should have done at the start.

652+ 50 = As®> + 4A + Bs®> + Cs + 3Bs + 3C

Note that this means:

6=A+B
0=3B+C
5=4A+3C
This can just be reducing the matrix:
1 1 016
0 3 1|0
4 0 315
1 0 0| 8
01 0|-2
0 0 1 6
Or A=8, B=-2,C =6. So,
8 —2s 6

8+3+82+4+82+4

Taking the inverse Laplace Transform,

f(t) =83 —2cos 2t + 3sin 2t

19



16 07-0CT-2024
17 09-OCT-2024

17.1 Translation on the t-axis
Recall the unit step function.

Definition 11 (Unit step function). The unit step function u(t) is defined as:

o fo i<,
=11 s

u(t)
&

Now consider the case where f(t) = g(t)u(t — a), where u(t — a) is the shifted unit step function. The Laplace
transform of f(t) is:
F(s) = e~ + L{g(t - a)}.

The steps to evaluate this are as follows:

1. Identify ¢(t) and a

2. Replace t with t — a to get g(t — a).

3. Expand g(t — a)

4. Take the Laplace transform. That is, £{g(t —a)}
5. F(s)=e * £{g(t —a)}

Example 17.1. Evaluate f(t) = u(t — 2).
Note that g(t) = 1, and a = 2. Then, g(t —2) = 1. We get £L{1} = L, or F(s) = e 251,

s? s

Example 17.2. Evaluate f(t) = t>u(t — 2).
Note that g(t) = 2, and a = 2. Then, g(t — 2) = (t — 2)%. Evaluating, g(t — 2) =
Laplace Transform, we have £{t? —4t+4} =5 — L + 2%, or F(s) = e *[Z - 5 +12

3

t2 — 4t + 4. So, Taking the

Example 17.3. Evaluate f(t) = 2 — 3u(t — 2) + u(t — 3).
We get F(s) =2(1) - 3%25 4

Example 17.4. Evaluate f(t) = 4costu(t — ).

Recall that cost — m = — cost. This will help us a lot in the future.

Now, we have a = 7, g(t) = 4cost. Then, g(t —7) = 4cos(t — m) = —4 cost. Knowing that L{—4cost} = 52445r17

—ms_4s
s241°

we get F(s) = —e

Example 17.5. Evaluate for Y(s): y' +y = 4 costu(t — m), given initial conditions y(0) = 0.

4s
Y -04+Y=e¢"
S + e 241
4s
Y(s+1)=—e ™
(s+1)=—e"" 5"
—ms_4s
—e -
Y _ s2+4+1
(s) P

20



But how do we find Y (¢)? We use the Second Translation Theorem.

Definition 12. The Second Translation Theorem in Laplace Transforms is as follows:
If
L)} = F(s),

then
L{f(t = a)u(t —a)} = e " F(s),

where u(t — a) is the unit step function that shifts the function by a units in time.
f(t)

Original f(¢t) Shifted f(t — a)

) f(t-a)

t=a

Example 17.6. f(t) = (t — 1)u(t — 1). Find F(s). Through some standard malarkey, F(s) = e™*%.
Example 17.7. F(s) = 3*258%

18 23-0CT-24

18.1 Dirac Delta Function examples
Example 18.1. Solve the differential equation with initial conditions y(0) = 0 and y’(0) = 0:
y" + 16y = §(t — 2m)

where §(t — 27) is the Dirac delta function centered at t = 27.

Solution:

The differential equation is a second-order linear equation with constant coefficients, and the non-homogeneous
term is the Dirac delta function. The general solution can be found using the Laplace transform method.

First, take the Laplace transform of both sides:

L{y" + 16y} = L{6(t — 2m)}

Using the Laplace transform properties:
s2Y (s) + 16Y (s) = e 2™

Solving for Y (s):

Taking the inverse Laplace transform:
y(t) = i sin(4(t — 27m))u(t — 27)
where u(t — 27) is the unit step function that shifts the response to start at t = 2.
Example 18.2. Solve the differential equation with initial conditions y(0) = 0 and y’(0) = 0:
y' +y=08(t—2m)+ 0(t + 4m)

where §(t — 27) and (¢ + 47) are Dirac delta functions centered at ¢ = 27 and ¢ = —4, respectively.
Solution:
First, take the Laplace transform of both sides of the equation:

L{y" +y} = L{6(t — 2m)} + L{56(t + 4n)}

21



Using the properties of the Laplace transform, we get:
s2Y (s) + Y (s) = e 2™ 4 7

Simplifying:

e—27rs + e47rs

Y =
(s) 21

Taking the inverse Laplace transform gives:
y(t) = sin(t — 2m)u(t — 27) + sin(t + 47 )u(t + 4)

where u(t — 27) and u(t + 47) are unit step functions that shift the sine responses to start at ¢ = 27 and t = —4m,
respectively.
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