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Abstract

This paper presents a novel approach to ensuring both stability and safety in nonlinear con-
trol systems subject to parametric uncertainties. We introduce distributionally robust Lyapunov-
Barrier networks (DR-LBNs), which combine Lyapunov stability certificates and barrier func-
tions within a neural network framework, while accounting for distributional uncertainty in
system parameters. Our method provides probabilistic guarantees on both asymptotic sta-
bility and forward invariance of a safe set, even when the true distribution of uncertainties
is unknown. We develop a comprehensive theoretical foundation for DR-LBNs, presenting
and proving several key theorems. These include results on probabilistic stability and safety
guarantees, robustness to distribution shifts, input-to-state stability, universal approximation
capabilities, and sample complexity bounds.

1 Introduction

The control of nonlinear dynamical systems under uncertainty remains a fundamental challenge
in robotics, aerospace, and other safety-critical domains. As autonomous systems become increas-
ingly prevalent in real-world environments, the need for controllers that can ensure both stability
and safety in the face of parametric uncertainties has never been more pressing. Traditional ap-
proaches to robust control often rely on worst-case analyses or assume known bounds on uncer-
tainties, leading to overly conservative controllers that may significantly sacrifice performance for
the sake of robustness [11].

Recent years have seen a surge of interest in learning-based control methods, particularly
those leveraging neural networks for their ability to approximate complex functions [4]. These
approaches have shown remarkable success in handling nonlinear dynamics and adapting to un-
certain environments [21]. However, they often lack formal guarantees on stability and safety, a
critical requirement for deployment in safety-critical applications. Moreover, the performance of
these learned controllers can degrade significantly when faced with distribution shifts between
training and deployment environments. Lyapunov theory and barrier functions have long been
powerful tools in control theory for certifying stability and safety, respectively. However, their ap-
plication to complex, high-dimensional systems with significant uncertainties remains challeng-
ing. The manual design of Lyapunov and barrier functions for such systems is often intractable,
motivating the need for data-driven approaches to certificate synthesis. Distributionally robust
optimization has emerged as a promising framework for decision-making under uncertainty, par-
ticularly when the true distribution of uncertainties is unknown. By optimizing over an ambiguity
set of possible distributions, this approach provides robustness to distribution shifts while avoid-
ing the excessive conservatism of worst-case analyses [15]. Despite its potential, the application of



distributionally robust optimization to nonlinear control synthesis, especially in conjunction with
Lyapunov and barrier function approaches, remains largely unexplored.

In this paper, we propose distributionally robust Lyapunov-Barrier networks (DR-LBNs), a
novel framework that addresses these challenges by unifying concepts from neural networks,
Lyapunov theory, barrier functions, and distributionally robust optimization. Our approach aims
to synthesize controllers for nonlinear systems that simultaneously ensure stability and safety un-
der parametric uncertainties, with robustness to distribution shifts. By leveraging the expressive
power of neural networks and the foundations of control theory, DR-LBNss offer a principled way
to design controllers with probabilistic guarantees on performance, even when the true distribu-
tion of uncertainties is unknown. The DR-LBN framework represents a significant step towards
bridging the gap between learning-based control and robust control theory. It offers the potential
to combine the adaptability of neural network approaches with the formal guarantees associated
with analytical control methods. This integration is crucial for the development of next-generation
autonomous systems that can operate safely in uncertain, dynamic environments.

Our Contributions. In this paper, we present a series of key contributions that address challenges
at the intersection of stability, safety, and robust control in learning-based systems. Our primary
contributions are as follows:

* Unified Neural Architecture for Stability and Safety: We introduce a novel neural network ar-
chitecture that simultaneously learns Lyapunov functions, barrier functions, and adaptive
control gains. This unified approach enables the synthesis of controllers that jointly opti-
mize for stability and safety, a significant advancement over traditional methods that often
treat these objectives separately.

* Distributionally Robust Formulation of Control Synthesis: We develop a distributionally robust
framework for control synthesis that explicitly accounts for uncertainties in the underlying
system parameters. Unlike traditional robust control methods that rely on worst-case anal-
yses or assume known uncertainty distributions, our approach constructs an ambiguity set
around the empirical distribution of uncertainties. This formulation leads to controllers that
are robust to distribution shifts between training and deployment.

* Theoretical Guarantees: We provide a comprehensive theoretical analysis of the DR-LBN frame-
work, including proofs of input-to-state stability, universal approximation capabilities, and
sample complexity bounds.

Paper Organization. The remainder of this paper is organized as follows. Section 2 provides
a comprehensive review of related work, situating our approach within the broader context of
control Lyapunov functions, control barrier functions, and distributionally robust optimization.
Section 3 presents the problem formulation and control objectives. Section 4 introduces the core
methodology of Distributionally Robust Lyapunov-Barrier Networks (DR-LBNs), including the
neural network architecture, distributionally robust stability and safety conditions, and the opti-
mization framework. Section 5 offers theoretical analysis, presenting key results on probabilistic
stability guarantees, robustness to distribution shifts, input-to-state stability, universal approxi-
mation capabilities, and sample complexity bounds. Finally, Section 6 concludes the paper and
discusses future research directions.



2 Related Work

Control Lyapunov Functions (CLFs). Control Lyapunov Functions (CLFs) have long been a
key tool in nonlinear control theory, offering a structured approach to stabilizing nonlinear sys-
tems [3|23]. CLFs provide a method for designing controllers that ensure asymptotic stability by
ensuring the derivative of a positive definite function decreases along system trajectories. Over
the years, the concept has evolved significantly, including the integration of neural networks with
CLFs. One approach leverages deep neural networks and sum-of-squares programming to learn
CLFs, enabling the design of stabilizing controllers for systems with complex, high-dimensional
dynamics [22]. This method harnesses the power of neural networks to approximate CLFs for
cases where analytical solutions are difficult or impossible to obtain. Additionally, data-driven
approaches have gained prominence, with recent work proposing frameworks that learn CLFs
directly from system trajectories, bypassing the need for explicit knowledge of system dynam-
ics [20]. This development expands the applicability of CLFs to systems with partially known or
uncertain models.

Robustness to uncertainty has been a key focus of recent CLF research. Long et al. developed
a distributionally robust framework for CLF search, providing probabilistic stability guarantees
when the true system parameters are unknown [[15]. This approach bridges the gap between tradi-
tional robust control methods and modern machine learning techniques. Extensions of CLF theory
to hybrid systems have also been explored. The work in [10] developed conditions for asymptotic
stability in hybrid loops using CLFs, broadening the applicability of these methods to systems
with both continuous and discrete dynamics. Adaptive CLFs have been introduced in [25] to
handle parametric uncertainties in nonlinear systems. By combining CLFs with adaptive control
techniques, their approach allows for real-time adaptation to changing system parameters. The
stochastic domain has also seen advancements in CLF theory. Taylor et al. proposed a reinforce-
ment learning approach to synthesize CLFs, combining model-free learning with formal stability
guarantees [24]. This method offers a promising direction for systems where accurate models are
difficult to obtain.
Control Barrier Functions (CBFs). CBFs is a powerful tool for enforcing safety constraints in non-
linear control systems. CBFs provide a means to verify and synthesize controllers that ensure
forward invariance of a safe set. The modern formulation of CBFs, draws inspiration from CLFs
and allows for the unification of safety and stability in a single framework. CBFs have found ap-
plications in various domains, including automotive systems [2], multi-robot coordination [26],
and bipedal robots [12]. Recent advancements in CBF theory have addressed several practical
challenges in safe control synthesis [1]. The work in [9] presented novel CBFs that handle safety
constraints with time and input constraints under disturbances, as well as high-relative degree
constraints under disturbances and input constraints. Their work also addresses the effects of
adversarial inputs and sampled-data implementation. Adaptive CBFs have been developed to
handle parametric uncertainties in nonlinear systems. Lopez et al. introduced a framework that
guarantees safety through online parameter adaptation and data-driven model estimation [16]].
This approach allows for real-time adaptation to changing system parameters, enhancing robust-
ness in uncertain environments. The integration of CBFs with learning-based approaches has been
a focus of recent research. For instance, CBFs have been extended to handle multi-agent systems.
Zhang et al. introduced a neural graph CBF framework for distributed safe multi-agent control,
enabling decentralized stabilization of interconnected nonlinear systems while ensuring safety



constraints [27].

Distributionally Robust Optimization (DRO). DRO has gained significant attention in recent
years as a framework for decision-making under uncertainty, particularly when the true distri-
bution of uncertainties is unknown [8,[19]. DRO aims to optimize performance while providing
robustness against a set of possible distributions, typically defined as an ambiguity set around an
empirical distribution. The fundamental idea behind DRO is to find solutions that perform well
under the worst-case probability distribution within a specified ambiguity set. This ambiguity set
is often constructed using statistical distance measures such as g-divergences or the Wasserstein
metric. By considering a range of possible distributions, DRO provides a safeguard against distri-
butional ambiguity and potential model misspecification. DRO has found applications in various
fields, including machine learning [28]], operations research, and finance [13]. In machine learn-
ing, DRO has been used to develop robust classification and regression models that maintain good
performance across different data distributions. In operations research, DRO has been applied to
supply chain management, logistics, and resource allocation problems to handle uncertainties in
demand and supply [5,17].

3 Problem Formulation and Methodological Approach

We consider a nonlinear control-affine system with parametric uncertainties:

B F) + s 0

where:

e x € X C R"is the state vector

u € U C R™ is the control input

¢ € E C RF represents uncertain parameters

f: X x E — R" is the drift dynamics
¢ ¢: X x E — R is the control input matrix

Assumption 1: The functions f and g are locally Lipschitz continuous, ensuring the existence
and uniqueness of solutions.

Assumption 2: The sets X, U, and E are compact, reflecting physical limitations of the system
and bounded uncertainties.

The safe set S C X is defined as:

S={xeX:h(x)>0} 2)

where h : X — R is a continuously differentiable function representing safety constraints. The
true distribution P* of ¢ is unknown. We have access to N independent and identically distributed
samples {1, ...,{n }. Let Py denote the empirical distribution based on these samples:

Ly
Py = =) 0 3)
N =



where J¢, is the Dirac measure at ;. To account for the discrepancy between Py and P*, we define
an ambiguity set P as a Wasserstein ball around Py:
P ={Pec M(E): Wy(P,Pn) < p} (4)
where:
e M(E) is the set of all probability measures on &
* W, is the p-Wasserstein distance
* p > 0is the radius of the Wasserstein ball

The p-Wasserstein distance between two probability measures P; and P, is defined as:

1/p
Wy r) = (inf e Gl @) ®)

Y€ET(Py,Py)

where I'(P;, P,) is the set of all joint distributions with marginals P; and P». Our objective is
to design a state-feedback controller u = 7(x) that ensures both stability and safety with high
probability under distributional uncertainty. Specifically, we aim to:

1. Stabilize the system to the origin: lim; . |[x(¢)| =0
2. Ensure the state remains in the safe set: x(t) € S forall t > 0

Both objectives should be achieved with high probability with respect to the true (unknown) dis-
tribution P*.

4 Distributionally Robust Lyapunov-Barrier Networks

To address this challenge, we propose the Distributionally Robust Lyapunov-Barrier Networks
(DR-LBNs) approach. We introduce a neural network @y : X — R* parameterized by 6, which
simultaneously learns:

Dy(x) = [V(x), h(x), kv (x), kn(x)] (6)
where:
e V(x)is a candidate Lyapunov function
* hi(x) is a candidate barrier function
* ky(x) and kj(x) are adaptive gain functions

The architecture consists of shared layers followed by separate heads:

z = @(X; Oshared) 7)
V(x) = [lpv(z60v)|* +el| x| (8)
h(x) = softplus(yy,(z;6y)) )

kv (x) = softplus(tx, (z; 6k, )) (10)
ky(x) = softplus(yy, (z; 6, )) (11)



where ¢ > 0 is a small constant and softplus(a) = log(1 + ¢“).
Distributionally Robust Stability and Safety Conditions. We formulate the distributionally ro-
bust Lyapunov condition as:

31617fDP(LV(x, &m)<0)>1—ey, VxeX\{0} (12)

where Ly (x,& ) = VV(x) " (f(x,&) + g(x,&)m(x)) + a1(]|x]|), and a; is a class K function. Simi-
larly, the distributionally robust barrier condition is:

gn;)P(Lh(x, &m)>0)>1—¢, VxeS (13)
S

where Lj,(x,&, ) = Vh(x) " (f(x,&) + g(x,&)rt(x)) + az(h(x)), and &, is a class K function.
Control Law Synthesis. We propose a control law that leverages both the Lyapunov and barrier
functions:

nt(x) = my(x) + (%) (14)

where:
v (x) = —kv(x)g(x,§) ' VV (x) (15)
7t (x) = kn(x)g(x,§) T Vh(x) (16)

Here, cf is an estimate of § (e.g., the mean of the empirical distribution). We formulate the DR-LBN
training as an optimization problem:

meinL’(G) = Ay Ly(0) + ALy (0) + AuLy(0) + AcLe(0) + A L (0) (17)
where:
e Ly(0) and L;,(0) are losses for Lyapunov and barrier conditions
e L,(0) penalizes excessive control effort
e L.(6) penalizes constraint violations
e £,(0) is a regularization term

Using the Wasserstein duality theorem [18], we reformulate the chance constraints:

Lyv(0) =Ey| sup CDV(x,G,/\V,iyV)] (18)
Ay >0,y

L,(0) =Ey | sup q)h(x,(),)\h,nh)] (19)
Ap>0,1p

where @y and &), are dual functions defined as:



1 N

Py (x,6,Av,v) = —Avev — iy — Y (Av(Ly(x, &, me) — v) " —pAy ) (20)
i=1
= 1 + 1/p
Dy (x, 0, Ap, 1n) = —Anep — 1y — N Y (An(=Lu(x, &, 7o) — mn) ™t — pAF) (21)

i=1

This formulation allows to solve the distributionally robust optimization problem using standard
gradient-based optimization techniques, providing a novel approach to designing controllers with
probabilistic stability and safety guarantees under uncertainty.

5 Theoretical Analysis

Having established the framework for DR-LBNs, we now turn our attention to the theoretical
foundations underpinning this framework. The following section presents a series of key theoreti-
cal results that provide guarantees on the performance, robustness, and generalization capabilities
of DR-LBNS.

Theorem 1. Consider the system (1) with uncertainty ¢ following an unknown true distribution P*. Let
Dy« be the optimal DR-LBN obtained from solving the optimization problem, and let 7t* be the correspond-
ing controller. Assume that:

(i) The Wasserstein radius p is chosen such that P* € ‘P with high probability. (ii) The distributional
robustness conditions are satisfied.

Then, for any initial state xo € S, the closed-loop system satisfies:

P*(||x(t)]| = 0ast — coand x(t) € S forallt > 0) > 1— (ey +¢p) (22)

where ey and e, are the risk tolerances for stability and safety, respectively.

Proof. We proceed in several steps:
Step 1: Probabilistic Lyapunov Decrease Condition
From the distributionally robust Lyapunov condition (49), we have:

;n7fDP(LV(x, ') <0)>1—¢ey, VxeX\{0} (23)
€
By assumption (i) and the definition of the infimum, this implies:

P*(Ly(x,& ") <0) >1—ey, VxeX)\{0} (24)

Step 2: Probabilistic Barrier Increase Condition Similarly, from the distributionally robust
barrier condition (50):

gn7fDP(Lh(x, &) >0)>1—¢, Vxes (25)
€
This implies:

P*(Ly(x,&,m*)>0)>1—¢, Vx€eS (26)

Step 3: Joint Probability



Let Ey be the event that Ly(x,&, t*) < 0 for all x € X\ {0}, and E; be the event that
Ly(x,¢, ) > 0 for all x € S. By the union bound:

P*(EyNEy) > 1— P*(ES) — P*(ES) 27)
>1—ey—gy (28)

where Ej, and Ej, denote the complements of Ey and Ej,, respectively.
Step 4: Stability Analysis Conditioned on the event Ey, we have:

W) W) (F,8) + 8 D (1) < —mi(lix]), vr e X\ {0} 29)

where a1 is a class K function. Let ¢ : R>9 — R>( be a class Ko function such that y(||x||) < V(x)
for all x € X. Such a function exists because V(x) is positive definite. Then, from ,

d__ w(y H(V(x))
— Vix) < —————+%£ 30
T e 00) 0
By the comparison principle, this implies that ||x(¢)|| — 0 as t — oo.
Step 5: Safety Analysis Conditioned on the event E;, we have:
dh(x) T *
o = Vh(x) (f(x,6) +8(x,6)7"(x)) > —az(h(x)), VxeS (31)

where a5 is a class K function. By the comparison principle, this implies that if #(xg) > 0, then
h(x(t)) > 0 for all + > 0, ensuring that x(t) remains in S for all + > 0. From steps 4 and 5,
we can conclude that when both Ey and Ej, occur, the system state converges to the origin while
remaining in the safe set S for all time. From step 3, we know that P*(Ey N Ej,) > 1 — (ev +¢€p,).
Therefore:

P*(||x(t)|| > 0ast — oo and x(t) € Sforallt >0) >1— (ey +¢p) (32)
which completes the proof. O

Implication. Theorem 1 establishes probabilistic guarantees on both stability and safety for sys-
tems controlled by DR-LBNSs. This result is particularly significant in the context of uncertain non-
linear systems, where deterministic guarantees are often unattainable. The probabilistic nature of
these guarantees allows for the treatment of uncertainty. The joint consideration of stability and
safety within a single framework represents an advancement over existing methods that often
treat these objectives separately. This approach enables the synthesis of controllers that can navi-
gate the complex trade-offs between stability and safety in uncertain environments. However, it
is important to note that the probabilistic nature of these guarantees may limit the applicability of
DR-LBNSs in settings where hard, deterministic constraints are required.

Theorem 2 (Robustness to Distribution Shift). Let P* be the true distribution of the uncertainty ¢, and
let P be a shifted distribution such that W, (P, P*) < A, where W), is the p-Wasserstein distance. Let 7r*
be the DR-LBN controller trained using the empirical distribution Py. Assume that:

(i) The Wasserstein radius p in the ambiguity set ‘P is chosen such that P* € ‘P with probability at
least 1 — ¢. (ii) The distributional robustness conditions are satisfied for P* with risk tolerances ey and e,
for stability and safety, respectively. Then, under the controller 7t*, for any initial state xo € S, we have:



D(||x(t)|]| — Oast — coand x(t) € Sforall t > 0) > 1 — (ev + &5, + 2CAT + 6) (33)
where C > 0 is a constant that depends on the Lipschitz constants of the system dynamics and the DR-LBN,
and q=p/(p+1).

Proof. We approach this in several steps:
Step 1: Wasserstein Distance Properties
We first recall a key property of the Wasserstein distance:

Lemma 3 (Wasserstein Distance Property). For any Lipschitz continuous function f with Lipschitz
constant L, and for any two probability measures P and Q, we have:

[Ep[f] - Bolf]] < LW, (P, Q) (34)

Proof. This is a well-known result in optimal transport theory. A proof can be found in [7]. O

Step 2: Lipschitz Continuity of Lyapunov and Barrier Conditions
Let Ly(x,¢, ) and Ly(x, ¢, ) be the Lyapunov and barrier conditions, respectively. We can
show that these functions are Lipschitz continuous in ¢:

Lemma 4 (Lipschitz Continuity of Conditions). There exist constants Ly, L, > 0 such that for all
x € X, (:1,52 € =

|Ly(x,¢1,7m") — Ly (x, 82, )| < Ly||G1 — G| (35)
|Ly(x, 81, 77°) — Ly(x, &2, )| < Lyl|G1 — &2 (36)

Proof. This follows from the Lipschitz continuity of f, g, V, and h, and the composition of Lipschitz
functions. O

Step 3: Bounding the Probability Difference
Let Ey = {Ly(x,¢& *) <0} and E;, = {Ly(x,& ) > 0}. We want to bound |P(Ey) — P*(Ey)|
and |P(E;) — P*(Ey)|-

Lemma 5 (Probability Difference Bound). For any event E defined by a Lipschitz condition with con-
stant L, we have:
[P(E) = P*(E)| < 2C(LW, (P, P*))" (37)

where C > 0 is a constant and g = p/(p + 1).

Proof. This follows from the dual form of the Wasserstein distance and the Kantorovich-Rubinstein
duality. A detailed proof can be found in [7]]. O

Applying this lemma to our Lyapunov and barrier conditions:

|P(Ev) — P*(Ev)| < 2C(LyW,(P, P*))? < 2C(LyA)1 (38)
|P(Ey) — P*(Ep)| < 2C(LyWp(P, P*))7 < 2C(L,A)T (39)

Step 4: Combining the Bounds
From the assumptions of the theorem and Theorem 1, we have:



P*(EvﬂEh) Zl—(ev—i—Eh—f—(S) (40)
Now, we can bound the probability under P:

P(Ey NE,) = P*(Ey NEy) + [P(Ey NEy) — P*(Ey N Ey)] (41)
> 1~ (ev+ey+6) — [P(Ev) — P*(Ev)| — |P(E;) — P*(Ey)] (42)
>1— (ey +e,+8) —2C(LyA)T —2C(L,A)1 (43)
>1— (ey +e, +2CAT+9) (44)

where in the last step we use L = max(Ly, L;,). The event Ey N E;, implies that both the Lyapunov
condition and the barrier condition are satisfied. Following the same reasoning as in Theorem 1,
this implies that ||x(¢)|| — 0 as t — oo and x(t) € S for all t > 0. Therefore,

D(||x(t)|]| = 0ast — coand x(t) € Sforallt > 0) > 1 — (ey + ¢, + 2CA7 +6) (45)
which completes the proof. O

Implication. Theorem 2, which quantifies the degradation of performance guarantees under dis-
tribution shifts, has implications for the deployment of learning-based controllers in real-world
scenarios. This result provides a theoretical justification for the empirically observed robustness
of distributionally robust methods to changes in operating conditions. The sublinear dependence
of the performance degradation on the Wasserstein distance between distributions suggests that
DR-LBNs can maintain reasonable performance even under significant shifts. This property is
particularly valuable in applications where the true distribution of uncertainties may drift over
time or differ between training and deployment environments. However, the theorem also high-
lights a fundamental trade-off: increasing the radius of the ambiguity set enhances robustness to
distribution shifts but may lead to more conservative control policies.

Theorem 3 (Input-to-State Stability). Consider the system with additive disturbances:

o = 8+ g(n ) () + () (46)

where ||w(t)|| < W forall t > 0. Under the DR-LBN controller 7t*, the system is input-to-state stable
with probability at least 1 — (ey + €.

Proof. We follow a series of steps:
Step 1: Probabilistic Lyapunov Condition
From the distributionally robust Lyapunov condition of our DR-LBN, we have:

gg)P(LV(x, ') <0)>1—ey, VxeX\{0} (47)

where Ly (x,&, %) = VV(x) " (f(x,) + g(x,§)* (x)) + aa (|l x[])-
By the definition of infimum and our assumption on the true distribution P*, this implies:

P*(Ly(x,& ") <0) >1—¢ey, Vxe X\ {0} (48)

Step 2: Lyapunov Function Derivative with Disturbance



Now, consider the time derivative of V(x) along the trajectories of the disturbed system:

V(x) = VV(x)" (f(x,€) +g(x, &) (x) + w(t)) (49)
= Ly(x, &) —ar(||x]) + VV(x) Tw(t) (50)

Step 3: Bounding the Disturbance Term
Using the Cauchy-Schwarz inequality and the bound on w(t):

VV(x) Tw(t) < [[VV(x)| - w(t)| < LyW (51)

where Ly is the Lipschitz constant of V(x), which exists due to our neural network construction.
Step 4: Probabilistic ISS Condition
Combining the results from steps 2 and 3, with probability at least 1 — ey :

V(x) < Lv(x,¢, ") —aa([x]]) + Ly W (52)
< —a([x]l) + LvW (53)

Now, let az(||x||) = a1(]|x]|). Then:

V(x) < —az(||x]|) whenever aq(||x]]) > 2LyW (54)
Let (s) = a; '(2Lys). Then:

V(x) < —az(||x||) whenever |x| > y(W) (55)

Step 5: Safety Consideration
From the distributionally robust barrier condition, we have:

P*(x(t) € Sforallt >0) > 1—¢ (56)

Step 6: Combining Stability and Safety

Using the union bound on the events in and (56), we can conclude that with probability at
least 1 — (ey + ¢5,), both the ISS condition (55) and the safety condition hold. The condition in (55)
is the defining property of input-to-state stability. It shows that the state x is ultimately bounded
by a class K function of the disturbance bound W. Moreover, this bound holds while the system
remains in the safe set S. Therefore, we can conclude that under the DR-LBN controller 77*, the
system is input-to-state stable with probability at least 1 — (ey + ¢j,). O

Implication. The input-to-state stability result extends the applicability of DR-LBNs to systems
subject to bounded external disturbances. While this result is promising, it assumes a known
bound on the disturbance magnitude. In practice, characterizing this bound may be challenging,
especially for complex, high-dimensional systems.

Theorem 4 (Universal Approximation for DR-LBNs). For any continuous Lyapunov function V*(x)
and barrier function h*(x), and for any € > 0, there exists a DR-LBN with a finite number of neurons that
can approximate V*(x) and h*(x) within an e-error in the supremum norm over any compact subset of the
state space.



Proof. We proceed in several steps:

Step 1: Universal Approximation Theorem for Feedforward Networks

We begin by recalling the classical universal approximation theorem for feedforward neural
networks with a single hidden layer:

Lemma 5 ( [6]). Let ¢ : R — R be a continuous sigmoid-type activation function. Then finite sums of the

form
N
G(x) = Y wio(w x + b;) (57)
i=1
are dense in C(I") in the topology of uniform convergence, where I" is the n-dimensional unit cube.

This lemma establishes that a single hidden layer neural network with sigmoid activation can
approximate any continuous function on a compact domain to arbitrary accuracy.

Step 2: Extension to Lyapunov and Barrier Functions

Let X C R" be a compact subset of the state space. Without loss of generality, we can assume
X is contained in a hypercube [~ M, M]" for some M > 0. Consider the functions V(x) = V*(x) —
V*(0) and hi(x) = h*(x). Note that V(0) = 0, preserving the Lyapunov function property at the
origin. By the Stone-Weierstrass theorem, there exist polynomials py (x) and p;,(x) such that:

sup V(x) = py ()] < > (58)
sup [f(x) — p(x)] < 3 (59)
xeX

Step 3: Approximation by Neural Networks
By Lemma 1, there exist single hidden layer neural networks Ny (x) and Nj,(x) with sigmoid
activation functions such that:

€
sup|py(x) — Ny (¥) < § (60)
xeX
€
sup [pu(x) — Nu(x)| < 3 (61)
xeX
Step 4: Construction of DR-LBN
We now construct our DR-LBN as follows:
Vn(x) = Ny (x) + V*(0) + 8 x||? (62)
hnn (x) = softplus(Nj,(x)) (63)
where 6 > 0 is a small constant chosen such that § sup, . [|x||* < §.
Step 5: Error Bounds
For the Lyapunov function approximation:
[V*(x) = Viun (%)] = [V(x) + V*(0) — Ny (x) — V*(0) — o] x|]?| (64)
< |V (x) = pv(x)] + [pv(x) = Ny (x)| + ]| x| (65)
€ € €
< g + g + 5 =€ (66)



For the barrier function approximation:

1" (x) — han (x)| = |h(x) — softplus(Nj(x))] (67)
< |Rh(x) = pu(x)| + |pn(x) — Nu(x)| 4 [N (x) — softplus(Ny,(x))|  (68)
€ € €

The last inequality holds because [softplus(z) — z| < 1 for all z, and we can always scale Nj,(x) to
make this difference arbitrarily small without changing its approximation properties.

Step 6: Preservation of Lyapunov and Barrier Properties

1. For the Lyapunov function:

* Vn(0) = V*(0)
* Vnn(x) > 0 for x # 0 due to the || x||* term

2. For the barrier function:
e hyn(x) > 0 for all x due to the softplus function

We have constructed a DR-LBN with a finite number of neurons that approximates both V*(x)
and h*(x) within e-error in the supremum norm over the compact set X, while preserving the
essential properties of Lyapunov and barrier functions. O

Implication. Theorem 4, which establishes the universal approximation capabilities of DR-LBNs,
provides theoretical justification for their use in approximating complex Lyapunov and barrier
functions. This result suggests that, with sufficient capacity, DR-LBNs can represent a wide class of
stability certificates and safety constraints. However, the theorem is existential in nature and does
not provide guarantees on the learnability of these functions or the sample complexity required to
achieve a given approximation error. Moreover, the potential need for large network architectures
to achieve good approximations may pose computational challenges in high-dimensional state
spaces.

Theorem 5 (Sample Complexity). For any 6 > 0, if the number of samples N satisfies
d 1

where d is the VC-dimension of the hypothesis class, then with probability at least 1 — 6, the true distribution
P* lies within the Wasserstein ball of radius p around the empirical distribution Py.

Proof. We proceed in several steps:
Step 1: Wasserstein Distance and Empirical Processes
Let Wp(P*,PN) denote the p-Wasserstein distance between the true distribution P* and the
empirical distribution Py. We start by relating this to an empirical process:
W!(P*, Py) = sup / FdpP* — / FdPy
fer

(71)

where F is the set of 1-Lipschitz functions.



Step 2: Symmetrization
Introduce an independent copy Py of the empirical measure. By Jensen’s inequality:

E[W} (P*, Py)] < 2 sup‘/fdPN—/fdPI’\[

feF

] (72)

Step 3: Rademacher Complexity
Let {0;}V, be i.i.d. Rademacher random variables. By the symmetrization principle:

E <2E

1 N
sup N Z aif(X;)
feF i=1

sup ‘ / FdPy — / FdPy, (73)

feF

The right-hand side is known as the Rademacher complexity Ry (F).
Step 4: Dudley’s Entropy Integral
We can bound the Rademacher complexity using Dudley’s entropy integral [14]:

R(F) < \}zﬁ /O " Jog N (F, e)de (74)

where N (F,¢) is the e-covering number of F.

Step 5: VC-dimension and Covering Numbers

For a function class F with VC-dimension d, we have the following bound on the covering
number:

log NV (F,¢) < cdlog <i> (75)

for some constant c.
Step 6: Bounding the Integral
Substituting this into Dudley’s integral:

12 [ 1
< — -
Rn(F) < \/N/o 1/cauog<g>de (76)
< d
for some constant C.

C\/ <= 77
<y 77)
Step 7: Concentration Inequality

By McDiarmid’s inequality, for any ¢ > 0:

2Nt
P(W}(P*,Py) — E[W}(P*,Py)] > t) < exp <— 7 ) (78)
where L is the Lipschitz constant of the loss function.
Step 8: Putting It All Together
Combining the bounds from steps 6 and 7, we have:

2N#2 ) 79)

P(W} (P*,Py) > C\/;\l]+ t) < exp (— 2



Setting the right-hand side to 6 and solving for N:

d 1
where ¢ = C\/% + t is the desired Wasserstein ball radius. Therefore, if the number of samples
N satisfies the given inequality, then with probability at least 1 — §, the true distribution P* lies
within the Wasserstein ball of radius p = € around the empirical distribution Py. O

Implication. The sample complexity bound provided in Theorem 5 offers insights into the data
requirements for learning DR-LBNs with probabilistic guarantees. This result is important for un-
derstanding the practical feasibility of the approach, especially in data-scarce environments. The
logarithmic dependence on the confidence parameter is favorable, allowing for high-probability
guarantees without excessive data requirements. However, the quadratic dependence on the in-
verse of the desired accuracy suggests that achieving very high precision may require a substantial
number of samples. It is worth noting that this bound is based on worst-case analysis and may be
pessimistic for many practical scenarios.

6 Conclusion and Future Work

This paper has proposed distributionally robust Lyapunov-Barrier networks (DR-LBNs), a frame-
work for synthesizing controllers that ensure both stability and safety for nonlinear systems un-
der parametric uncertainty. By using recent advances in distributionally robust optimization and
neural network architectures, our approach provides probabilistic guarantees on system perfor-
mance even when the true distribution of uncertainties is unknown. The core contributions of this
work lie in the development of a unified neural network architecture that simultaneously learns
Lyapunov functions, barrier functions, and adaptive control gains. This integration enables the
synthesis of controllers that balance stability and safety objectives in a principled manner.

Future Directions. While this paper has focused on establishing the theoretical foundations of
DR-LBNs, several important directions for future research emerge. First, the development of
comprehensive numerical examples and case studies is important to validate the practical efficacy
of DR-LBNs. Such examples should span a range of nonlinear systems, from low-dimensional
benchmarks like the inverted pendulum to high-dimensional, safety-critical applications such as
autonomous vehicles or multi-agent robotics. Beyond numerical validation, future work should
explore the online adaptation of DR-LBNSs to time-varying uncertainties, potentially incorporat-
ing techniques from adaptive control and online learning. The extension of the framework to
handle partial state observations and measurement noise is another critical area for investigation.
Additionally, the integration of DR-LBNs with model predictive control frameworks could yield
powerful tools for long-horizon planning under uncertainty. From a theoretical perspective, char-
acterizing the finite-sample behavior of DR-LBNs and developing tighter generalization bounds
remain open challenges.
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