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1 Week 2

1.1 Knapsack Problem

The knapsack problem is a conventional dynamic programming problem.
Let’s start with the 01 knapsack problem. We have a set of objects, with a defined weight. Let’s give some

numbers here.
We begin with n = 4 objects, each with some profit P and weight ω. We also have a bag of capacity m = 8.

P = {1, 2, 5, 6}

ω = {2, 3, 4, 5}

Objective: fill bag with above objects.
What’s a good output for this? Let’s define xi such that if it’s included, 1 is output, but if it’s not included, 0 is

output.
For instance, a valid output here would be something like:

{1, 0, 0, 0}

Therefore, this is basically an optimization problem. Well, clearly, it is.
Here’s the optimization problem in nicer detail:

max
∑

pixi

such that ∑
ωixi ≤ m

Let’s talk about dynamic programming now. Dynamic programming works under a paradigm of seek and solve
solutions. Dynamic programming then asks you to evaluate all solutions, and then pick to most optimal (best) one
for the task at hand.

What’s the number of solutions to this problem? Clearly, an upper bound is 2n. O(2n) is not good. Dynamic
programming does O(2n) indirectly.

Abdul Bari uses a tabular method here. I highly recommend his video here: the video is called 4.5 0/1 Knapsack
- Two Methods - Dynamic Programming. Here’s the TiX filled out.

0 1 2 3 4 5 6 7 8
Pi ωi 0 0 0 0 0 0 0 0 0
1 2 0 0 1 1 1 1 1 1 1
2 3 0 0 1 2 2 3 3 3 3
5 4 0 0 1 2 5 6 6 7 8
6 5 0 0 1 2 5 6 6 7 8

1



Take a minute and read it, see if you understand what’s going on here.
There’s a formula here as well, that’s pretty slick:

V [i, ω] = max{V [i− 1, ω], V [i− 1, ω − ω[i]] + P [i]}

Verify for yourself.
Now, we need to find x1, x2, x3, x4. This is the sequence of decisions part.
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