Sample Quiz on Function Approximation and

Approximate Dynamic Programming

Instructor: Prof. XYZ

Instructions

Answer the following questions. For computational questions, show all steps
clearly.

Problems

Q1. Conceptual: Function Approximation in RL

Q2.

What is the role of function approximation in reinforcement learning, and
why is it necessary for large-scale problems? Provide examples of situa-
tions where exact solutions are impractical.

Solution:

Function approximation in reinforcement learning is used to generalize
from limited data, allowing the agent to handle large state and action
spaces where exact solutions (like tabular methods) are impractical. It
enables the agent to approximate value functions or policies when the
state-action space is too large to store or compute exactly. Examples
include robotics, where there are continuous states (e.g., positions, ve-
locities) and games like Go, which have an enormous number of possible
states.

Computational: Linear Value Function Approximation

Consider an environment with three states S = {s1, $2, 83} and a feature
vector ¢(s) = [p1(s), p2(s)]. Assume that for state s1, the feature vector
is ¢(s1) = [1,0], for sq it is ¢(s2) = [0, 1], and for s3 it is ¢(s3) = [1, 1].
The value function is approximated as a linear function V (s;0) = 67 ¢(s),
where 6 = [61,02]. Given 61 = 2 and 6, = 3, compute the approximate
values of V(s1), V(sz2), and V(s3).

Solution:
The approximate value function is given by:

V(s;0) = 01¢1(s) + O22(s)

For sq:
V(is1)=2-143-0=2



Q3.

Q4.

For s5:
V(se)=2-0+3-1=3

For s3:
V(ss)=2-1+3-1=5

Conceptual: Stochastic Gradient Descent in RL

Explain how stochastic gradient descent (SGD) is used for value function
approximation in reinforcement learning. What are the key advantages
and challenges of using SGD?

Solution:

Stochastic gradient descent (SGD) is used to update the parameters of
the value function approximation by minimizing the error between the
predicted value and the target (e.g., the return or TD target). The update
rule for SGD is:

0 < 0+ o (Target — V(s;0)) VoV (s;0)

Advantages of SGD include its efficiency for large datasets and ability
to handle online learning. However, it can be noisy (since updates are
based on individual samples) and may converge slowly or get stuck in
local minima.

Computational: Gradient Descent Update for Value Function
Approximation

Using the same feature vectors and parameters from Problem 2, assume
that the true value for state s; is 3. Perform one step of gradient de-
scent with learning rate a = 0.1 to update the parameter 6. The current
approximation is V(s1) = 2.

Solution:
The gradient descent update rule is:

AV (s;0)

0; < 0; + a(Target — V (s;0)) 5

For s1, the target value is 3, and the current approximation is V(s1) = 2.

Thus, the error is:
0=3-2=1

For 61, the derivative of V(s1) with respect to 0y is a‘géjl) =¢1(s1) = 1.
So, the update for 6, is:

01 +—24+01-1-1=21

For 6, the derivative of V(s1) with respect to 05 is 8‘(%21) = ¢o(s1) = 0.
Therefore, 62 remains unchanged:

02(—3

Thus, the updated parameters are #; = 2.1 and 6y = 3.



Q5.

Q6.

Q7.

Conceptual: Batch vs. Incremental Methods for Function Ap-
proximation

Compare batch methods and incremental methods in the context of value
function approximation in reinforcement learning. When would you prefer
one over the other?

Solution:

Batch methods update the value function approximation by processing
a large set of experiences all at once (e.g., using least squares), whereas
incremental methods update the value function after each new experience
(e.g., using stochastic gradient descent). Batch methods can produce more
stable and accurate solutions, but they require storing and processing
large amounts of data. Incremental methods are more efficient for online
learning and can be used in real-time settings, but may converge more
slowly and be more prone to noise.

Computational: TD Learning with Function Approximation
Given the following feature vector for states ¢(s1) = [1,0], ¢(s2) = [0,1],
and ¢(s3) = [1,1], and the current parameters 6 = [2, 3], the agent expe-

riences the transition s; =l s2. Update the parameter vector 6 using
TD(0) learning with learning rate o = 0.1 and discount factor v = 0.9.

Solution:
The TD(0) update rule is:

AV (s;0)
90,

0; 0, + ar+V(s';0) — V(s;0)]
Step 1: Compute the current values V' (s1) and V(s2):
V(si)=2-1+3-0=2
V(ss) =2-0+3-1=3
Step 2: Calculate the TD error:
d=r+79V(s2) —V(s1)=1409-3-2=1.7
Step 3: Update #; and 65: For 64:
0 <~ 2+01-1.7-1=217

For 65:
0y +—3+01-1.7-0=3

Thus, the updated parameters are 6; = 2.17 and 6, = 3.

Conceptual: Experience Replay in Deep Q-Networks (DQN)
What is experience replay in Deep Q-Networks (DQN), and why is it
important for improving the learning process?



Q8.

Qo.

Q10.

Solution:

Experience replay is a technique where an agent stores its experiences
(state, action, reward, next state) in a replay buffer and samples from this
buffer to update the Q-network. It helps break the correlation between
consecutive experiences, improving the stability of learning. By reusing
past experiences, experience replay also increases the data efficiency and
reduces the risk of overfitting to recent experiences.

Computational: Least Squares Prediction for Value Function
Approximation

Given a set of feature vectors ¢(s1) = [1,0], ¢(s2) = [0,1], ¢(s3) = [1,
and the corresponding target values Viarget(s1) = 2, Viarget(s2) =
Viarget (53) = 4, perform one step of the least squares update to find t
best-fit parameters 6 = [0y, 65].

1
3

Solution:
The least squares solution minimizes the error between the target values
and the predicted values. We want to minimize:

mlnz ‘/targct 0T¢( ))

We can solve this using matrix algebra, but for this step, we can set up
the normal equations:

By solving this system of linear equations, we find that 6; = 2 and 65 = 2.

Conceptual: Bias-Variance Tradeoff in Function Approximation
Explain the bias-variance tradeoff in the context of function approximation
in reinforcement learning. How does the choice of model complexity affect
this tradeoff?

Solution:

The bias-variance tradeoff describes the balance between the error due to
bias (error from approximating a complex function with a simpler model)
and the error due to variance (sensitivity to fluctuations in the training
data). A more complex model may have low bias but high variance, while
a simpler model may have high bias but low variance. The key is to find a
model with an appropriate level of complexity to minimize the total error.

Computational: Feature-Based Action-Value Function Approxi-
mation

Consider a Q-function approximated as Q(s, a; 0) = 01¢1(s,a)+02¢2(s, a).
Given the following feature vectors for state-action pairs: ¢(s1,a1) = [1,0],
@(s2,a1) = [0,1], and ¢(s1,a2) = [1,1], and parameters § = [2, 3], compute
the approximate action-value Q(s1,a1), Q(s2,a1), and Q(s1, az).



Solution:
The action-value function is approximated as:

Q(s,a;0) = 01¢1(s,a) + O202(s, a)

For Q(s1,a1):
Q(sl,al):2~1+3~0:2

For Q(s2,a1):
Q(Sg,al) =2-04+3-1=3

For Q(s1,a2):
Q(Sl,ag):2'1+3'1:5



