Quiz 4 Review: Understanding RL

[Chirayu Salgarkar]|

Fall 2024

Contents

1 Policy Gradient 1
1.1 Policy Objective functions . . . . . . . . . . . o L 2
1.2 Finite Difference Policy Gradient . . . . . . . . . . . . . 2
1.3 Monte-Carlo Policy Gradient . . . . . . . . . . . . . . e 2
1.4 Ome-step MDPs . . . . . . . e 5
1.5 Actor-Critic Policy Gradient . . . . . . . . . . . . 7

2 Problems 8

1 Policy Gradient

These are a popular class of practical algorithms to solve RL problems.

There are ways we’ve solved for action-value function before. We did approximation before, approximately the
value function using parameters. Think function approximators. Now, we actually want to directly parametrize the
policy. That is:

mo(s,a) = P[als, ]

We define a probability distribution that change the probabilities as we move to different states, allowing us to
maximise reward. We care about model-free RL, and directly from experience, it can adjust its parameters of it’s
policy to maximize it’s reward.

We care about this because it allows us to scale, where we have uncertain environment.

There are three major categories of parametrized policy. Two words: gradient descent. We follow the gradient
in the direction that gets us to the most reward. We have value based and policy-based RL methods.

Are there advantages and disadvantages of policy-based vs value-based methods?

There are situations where it is more efficient to store policy as opposed to value function. Think atari games,
where the learned value function may be complicated af. However, it’s easier (compute-wise) to remember le ftgood,
or something similar. Policy can be more compact.

Policy also works because it converges better (some value-based methods can have oscillatory issues, for instance).
If you directly follow policy, you're guaranteed to converge. They are also effective in high-dimensional or continuous
action spaces. With value based methods, you need to find a max. That can be expensive. It can also learn stochastic
policy.

Why would we ever want a stochastic policy? Consider the rock-paper-scissors analogy in class. If you just
play this deterministically, you get exploited. If you play one choice often, your opponent will catch up. Similarly,
if you have partially observable environments, as opposed to fully observable enviornments, the Markov Property
may not hold. We only see certain features of the environment. In the Aliased Gridworld example, the agent can’t
differentiate the grey states. The two grey squares are aliased. They look basically the same. Your feature vector
will be identical, which means that in a deterministic policy, you choose the same action! If you act greedily, you
either go west all the time or east all the time! Which doesn’t work. Stochastic policies work far better.

However, naive policy learning will typically converge to local as opposed to absolute minima. This is also
inefficient, with high variance.



1.1 Policy Objective functions

What is the best 0 for policy mg(s,a)? First of all, how would you even measure that? In episodic environments, use
the start value. That is, when I start the game at a start state, what policy ends with the best score?
This is represented as:

J1(0) = V7 (s1) = Ex, [VA]

In continuing environments, use the average value. That is, consider the policy we are in any state times the
value of all the states.

Jang(e) = Z are (8)(Vﬂ-9 (S))

Or, we look at the average reward per time step. There is some probability i am in a state, there’s some probability
of a reward, and this is the immediate reward i get at each time step.

Tavgv (0) =D d™(s) > o(s,a) %<

S
d™ is the stationary distribution of the markov chain for 6.
As you can tell, this is clearly an optimization problem. Some approaches don’t use gradient, but greater efficiency
is possible using gradient algorithms.

1.2 Finite Difference Policy Gradient

Policy gradient algorithms search for a local maximum in the policy objective function by ascending the gradient of
the policy with respect to the parameters 6.
00 = aVeJ(0)

Here,
dJ(9) dJ(o)
dby ) db,,

Vo J(6) = [( )"

and « is a step size parameter.
If you had no idea how to find the gradeitn, you can estimate by just perturbing #. Literally, the limit definition
of the derivative:

dJ(0) _J+eup—J(0)
dak - €
where uy is a unit vector with 1 in the kth component, and 0 elsewhere. It’s simple, but sometimes effective, and
works on nondifferentiable policies. It works on fast AIBO walk for RoboCup.

1.3 Monte-Carlo Policy Gradient

Now, we go to Monte-Carlo Policy Descent. We now compute the policy gradient analytically We have some policy
mg which is differentiable when it is non-zero and we know the gradient Vymy(s,a). There are some likelihood ratios
that basically show that:

Vomy(s,a)

= 1
Wg(s,a) WG(saa‘)VQ Og?TQ(S,Cl)

Vomg(s,a) = ma(s,a)

This works because of calculus. We now have a score function Vglogmg(s,a). This allows us to take expectations.
This is nice :).



Derivation of the Score Function We begin with the gradient of the policy 7y(s, a) with respect to the parameter
vector 0:

Vé)ﬂ'@(sv a’)

We can express this gradient in terms of the log-probability using a simple property from calculus:

B Vomo(s,a)
Vomg(s,a) = ma(s, a)m
Notice that % is just the gradient of the log-probability:
v
Vors(5,:9) _ G 1og (s, a)
mo(s,a)

Thus, we can rewrite the original expression as:

Vomg(s,a) = ma(s,a)Vglogmy(s,a)

This is a crucial result because it transforms the gradient of the probability my(s,a) into the probability itself
multiplied by the gradient of the log-probability, which is known as the score function:

Vé‘ log 7(_9(8, a)

Why This is Useful This result allows us to express expectations involving the gradient of the policy in a more
tractable form. For example, for any function f(s,a), we can take the expectation over actions under the policy
mo(s,a) as:

anﬂ'g(s) [VO IOg 7T9(57 a)f(s, a)]

This is particularly useful in policy gradient methods, where we seek to optimize the expected return by adjust-
ing #. The use of the score function simplifies the calculation of gradients for stochastic policies, as we can take
expectations of the log-probabilities rather than directly computing derivatives of probabilities.

Conclusion By expressing the gradient in terms of the log-probability, we obtain a more convenient form that
facilitates taking expectations over actions. This is a key technique in reinforcement learning algorithms like REIN-
FORCE.

What does this look like?

Softmax Policy with Linear Features In a softmax policy, the probability of selecting an action a in a given
state s is determined by the exponentiated linear combination of features. Let ¢(s, a) be the feature vector associated
with the state-action pair (s, a), and @ be the parameter vector. The action probabilities are computed as follows:

exp(¢(s,a)"0)
> areaexp(o(s, a’)"0)

where: - w(a | s;0) is the probability of taking action a given state s and parameter vector 6. - ¢(s,a) is the
feature vector for state s and action a. - 0 is the parameter vector to be learned. - A is the set of all possible actions.
The numerator, exp(¢(s,a)”'d), represents the weight assigned to action a based on the features of the state-action
pair (s,a) and the parameters . The denominator normalizes these weights by summing over all possible actions a’.

m(a|s;0) =

Score Function The score function, which is the gradient of the log-probability of taking action a in state s, is
given by:

Vologm(a| s:0) = ¢(s,a) — Y w(a’ | 5;0)¢(s,a)
a’€A
where: - Vylogm(a | s;0) is the gradient of the log-probability with respect to the parameters 6. - ¢(s,a) is the
feature vector for the selected action a. - 7(a’ | s;0) is the probability of selecting action o’ under the policy. - The
term ) o4 m(a’ | 5;0)¢(s,a’) is the expected value of the feature vector under the current policy, weighted by the
action probabilities.



Explanation - The softmax policy ensures that actions with higher weights (i.e., ¢(s,a)T0) have higher probabili-
ties of being selected, while still assigning non-zero probabilities to all actions. - The score function is important for
policy gradient methods, as it allows us to update the parameters 6 in a direction that improves the probability of
good actions.

In continuous action spaces, you use Gaussian Policy.

Gaussian Policy In many reinforcement learning problems, especially those with continuous action spaces, the
policy mg(a | 8) is modeled as a Gaussian distribution. For a state s, the policy outputs a mean pug(s) and standard
deviation o¢(s), parameterized by 6. The action a is then drawn from a Gaussian distribution:

a~ N (po(s),00(s)?)
The probability density function (PDF) of a Gaussian policy can be written as:

mo(a | 8) = ——— exp (_(“_“0(5))2)

2mog(s)? 204(5)?

where: - p19(s) is the mean of the Gaussian distribution, which is a function of the state s and the parameters 6.
- 0g(s) is the standard deviation of the Gaussian, which may also be parameterized by 6. - a is the action sampled
from this Gaussian distribution.

Log-Probability of a Gaussian Policy The log-probability of taking action a under the Gaussian policy is
computed as follows:

(a — po(s))?

logmg(a|s) = —%10g(2w09(3)2) T (s

This expression is the natural logarithm of the Gaussian PDF.

Score Function for a Gaussian Policy The score function is the gradient of the log-probability of taking action
a with respect to the parameters . Let’s compute it for both the mean and the standard deviation.
1. **Gradient with respect to the mean** pg(s):

a — pio(s)
oo(s)?

This shows that the score function with respect to the mean is proportional to the error between the action a
and the mean jy(s), weighted by the variance og(s)?.

2. **Gradient with respect to the standard deviation®™* og(s):

(a—po(s)? 1
0'9(8)3 O’g(s)

Vologmg(a|s) = Vouo(s)

Vologmg(a|s) = ( ) Vooo(s)
This shows that the score function with respect to the standard deviation takes into account how far the action
a is from the mean, normalized by the variance.

Summary For a Gaussian policy, the score function allows us to compute the gradient of the log-probability of
selecting an action with respect to the policy parameters. Specifically:

- The gradient with respect to the mean py(s) is proportional to the difference between the action and the mean,
scaled by the variance. - The gradient with respect to the standard deviation oy (s) includes terms that capture the
variability of the actions with respect to the mean.

These gradients are useful in policy gradient algorithms where the goal is to optimize the parameters 6 to improve
the expected return.



1.4 One-step MDPs

One-Step MDPs A one-step MDP is a simplified version of a Markov Decision Process (MDP) in which the agent
makes a single decision, receives a reward, and then terminates. This setup is useful for illustrating key concepts in
reinforcement learning, as it eliminates the complexity of multi-step transitions.

In a one-step MDP, given a state s, the agent selects an action a according to a policy m(a | s), receives an
immediate reward R(s,a), and then transitions to the terminal state. The value of taking action a in state s under
policy 7, denoted as Q™ (s, a), is simply the expected reward:

Q"(s,a) = E[R(s, a)]

The state-value function V™ (s), which represents the expected reward for the agent starting in state s and
following policy , is the expectation over all possible actions:

Vi(s) = ma]$)Q(s,a)
Substituting Q™ (s,a), we have:

VT(s) = mla| s)E[R(s,a)]

a

Policy Optimization in One-Step MDPs

One-Step MDPs A one-step Markov Decision Process (MDP) simplifies the typical MDP structure to a single
decision step. The agent selects an action a from a state s, receives an immediate reward R(s,a), and the process
terminates. This simplified structure helps illustrate key reinforcement learning concepts.

For a one-step MDP, the objective is to maximize the expected reward J(6), where the policy is parameterized
by 0. The value of taking action a in state s, denoted by Q™ (s,a), is simply the expected reward for that action:

Q" (s,a) = E[R(s, a)]
The value of the state under policy 7, denoted as V™ (s), is the expected reward over all possible actions, weighted

by the policy’s action probabilities:

v(s) = Y w(a | $)Q7(s.a)

a

Substituting Q™ (s, a) = E[R(s,a)], we have:

V(s) =) m(al|s)E[R(s,a)]

a

Objective Function J(#) in One-Step MDPs The goal is to optimize the policy mp(a | s) to maximize the
expected reward. This objective is captured by the function J(6), which is defined as the expected reward under the
current policy:

J(0) = Earnmy [R(s,0)]
To optimize J(6), we compute the gradient with respect to 6. Using the score function Vg logmy(a | s), we derive
the policy gradient as follows:
V0 (8) = Eamr, [Volog mo(a | s)R(s, a)]

This formulation allows us to adjust 6 to improve the expected reward by updating the policy in the direction of

the gradient.
To now do this for multistep MDPS, chance the instantaneous reward with the long-term value function.



Multi-Step MDPs In a multi-step Markov Decision Process (MDP), the agent interacts with the environment
over several time steps. At each time step ¢, the agent takes an action a; in state s¢, receives a reward R(st, at), and
transitions to a new state s;11. The goal is to maximize the expected long-term return, which is the cumulative sum
of discounted rewards:

oo
Gy = Z ’YkR(SHkn at+k)7
k=0

where v € [0,1) is the discount factor that determines how future rewards are weighted relative to immediate
rewards.
The state-value function V™ (s) represents the expected return starting from state s and following policy 7:
Vﬂ(S) = ]ETr[Gt | St = S].
Similarly, the action-value function Q™ (s, a) represents the expected return after taking action a in state s and
following policy 7:

Q™ (s,a) =E;[G: | st = s,a: = a.

Policy Objective J(0) In multi-step MDPs, the objective is to optimize the policy mg(a | s) to maximize the
expected long-term return. The objective function J(#) is defined as the expected return:
J(G) = E8~p"’a~m [Gt]7
where p™(s) is the state distribution under policy .

Theorem 1 (Policy Gradient Theorem). The gradient of the objective function J(0) with respect to the policy
parameters 0 is given by:

VOJ(Q) = Es~p",a~'n’9 [VO IOg 77—0(0' | S)Qﬂ-(sa a)] .

This theorem states that the gradient of the expected return is proportional to the expected gradient of the log-
probability of the policy, weighted by the action-value function Q7 (s,a). In practice, Q™ (s,a) may be approrimated
using either real rewards or learned estimates of the action-value function.

Using the score function Vylogmg(a | s), we can express the policy gradient as:

VoJ(0) = Egpr amm, [Vologmg(a | s)Gy).

This form of the gradient is the foundation of policy gradient methods in reinforcement learning, allowing us to
adjust the policy parameters 6 in the direction that maximizes the expected return.

Monte Carlo Policy Gradient (REINFORCE) The policy gradient theorem forms the basis for the Monte
Carlo Policy Gradient, also known as the REINFORCE algorithm. In this algorithm, the parameters of the policy
are updated by stochastic gradient ascent using samples from the environment.

From the policy gradient theorem, the gradient of the objective function J(6) is given by:

Vo J(0) = Espr amn, [Vologma(a | s)Q7 (s, a)].

Since the true action-value function Q™ (s, a;) is typically unknown, we use the return G; (the cumulative reward)
as an unbiased sample of Q™ (s, a;). This is the foundation of the REINFORCE algorithm.

At each time step ¢, the agent observes a state s;, takes an action a;, and receives a reward. After completing an
episode, the return G; from each state-action pair can be computed as:

Gy = Z ’YkR(StJrk, at k),
k=0

where 7 is the discount factor. The return G; serves as an unbiased estimate of Q™ (s¢, a;), allowing us to compute
the policy gradient for each episode.



Stochastic Gradient Ascent Using G; as a sample of the action-value function, the gradient of the policy can
be approximated as:

T
VoJ(8) = Z Vg logmg(a, | s1)Gh,
t=0
where T is the length of the episode. The parameters 6 of the policy are updated using stochastic gradient ascent
as follows:

T
0+ 6+ az Vologmg(as | s¢)Gy,
t=0
where « is the learning rate. This update rule incrementally improves the policy by adjusting the parameters 6
in the direction that increases the expected return.

Summary The REINFORCE algorithm updates the policy parameters by performing stochastic gradient ascent
using the sampled returns G;. Since G; is an unbiased estimate of Q™ (s;, at), this method optimizes the policy over
time without requiring a model of the environment.

1.5 Actor-Critic Policy Gradient

However, Monte-Carlo policy gradients still have high variance. Now, we use a critic to estimate the action -
value function, which updates actional value function parameters w which updates policy parameters 6 in direction
suggested by the critic. This follows an approximate policy gradient.

Reducing Variance with a Critic While the Monte Carlo policy gradient (REINFORCE) algorithm provides
a straightforward approach to policy optimization, it suffers from high variance due to the stochastic nature of the
returns G;. High variance can lead to unstable learning and slow convergence.

To mitigate this issue, we introduce a critic, which is a value function estimator that approximates the action-
value function Q™ (s,a). The critic uses its own parameters w to predict the expected return, allowing for more stable
and lower-variance updates to the policy.

The critic is trained to minimize the mean squared error between its predictions and the actual returns:

L(w) = 5E [(@Qse,asw) ~ G0

where Q(s¢, ar; w) is the estimated action-value function given state s; and action a;, and G is the return observed
after taking action a;.

Approximate Policy Gradient Once the critic provides an estimate of the action-value function, we can use this
estimate to update the policy parameters 6. The approximate policy gradient can be expressed as:

VoJ(0) =~ E [Vglogmg(ar | s¢)Q(st,as;w)].

In this formulation, Q(s¢, at;w) serves as a more stable estimate of the action-value function compared to using
the return G, directly. The parameters of the policy are then updated using:

0+ 0+ aVyJ(h),

where « is the learning rate.
By leveraging the critic, we perform policy updates that are more reliable and less susceptible to variance, leading
to faster and more stable learning in reinforcement learning tasks.

Summary Incorporating a critic into the policy gradient framework allows us to reduce variance and improve
the stability of policy updates. By estimating the action-value function using a separate set of parameters w, we
achieve more reliable updates to the policy parameters 6, following an approximate policy gradient approach. This
methodology is a fundamental aspect of actor-critic algorithms in reinforcement learning.



2 Problems

Given the action preferences {p1,p2,p3} = {1.2,0.5,0.1}, the probability of selecting each action using the softmax
policy is calculated as follows:

The softmax policy assigns the probability for action 7 as:
ePi
7r(al-) = 3

Zj:l ePj

For the given preferences:

61'2 61'2

el2 +60'5 + e0-1 el-2 —|—€O'5 —|—60'1

m(a1) =

0.5
m(az) = el2 4 05 1 0.1
(0.1

m(a3)

T 12 1 05 1 g0l
Now calculating the values of ePi:

e'? ~ 33201, %% ~1.6487, %!~ 1.1052

The denominator becomes:

3.3201 + 1.6487 4 1.1052 = 6.074
Thus, the probabilities are:

3.3201
m(ay) = 6074 ~ 0.5466
16487

= 6.074

~ 0.2714

1.1052
mlas) ~ 5 o7

Therefore, the probabilities of selecting actions a1, a2, and ag are approximately 0.5466, 0.2714, and 0.1820,
respectively.

~ 0.1820

Problem 1: Policy Gradient Estimation
Given the following policy 7y (s, a) for state s and action a:

6¢(s,a)T9
S rea cFOT

where ¢(s,a) is the feature vector for state-action pair (s,a), and € is the parameter vector.

Given: o(s.a1) = H . bs,az) = [015] . h= [Bjﬂ ,

compute the probability of taking action a; in state s, i.e., m(s, ay).

mo(s,a) =



Solution

First, calculate ¢(s,a;)70 and ¢(s,as)’0:
#(s5,a1)70=1-03+2-0.7=1.7,

#(s,a2)70 =0.5-0.34+1-0.7=0.85.
Next, compute the action probabilities:

(5.a3) el 7 el 7
mo(s,a1) = = :
' el7 4 085 ol.7 4 (0.85

Using a calculator:
~ 0.7005.

(5,a1) 5.4739 5.4739
T, = =
o 5.4739 +2.3396  7.8135

Thus, my(s,a1) =~ 0.7005.

Problem 2: Gaussian Policy Log-Probability

In a Gaussian policy, the action a is sampled from a distribution A4 (ug(s), og(s)?).

Given:
up(s) =2, op(s) =05, a=3,

compute the log-probability log mg(als).

Solution

The log-probability for a Gaussian distribution is given by:

_ 2
log g (als) = —% log(27mog(s)?) — W.
Substitute the given values:
log 7o (als) = -+ log(27(0.5)2) — B2
BMorals) = —7 foglamh: 2(0.5)2

Calculate each term: ) )
—3 log(27(0.25)) = —3 log(1.5708) ~ —0.2857,

(3-22 1

= =2.
2(0.5)2  2-0.25

Thus, the log-probability is:
log mp(als) = —0.2857 — 2 = —2.2857.
Problem 3: Expected Reward in One-Step MDP

In a one-step MDP, the agent takes an action a, receives a reward R(s,a), and terminates. Given the policy:

(al) 0.6 ifa=a,
ﬂ- =
0.4 ifa=ao,

and the rewards:
R(s,a1) =10, R(s,a2) =5,

compute the expected reward V7 (s).



Solution

The expected reward is:

V™(s) =Y w(als)R(s,a).

a

Substitute the values:
V™(s)=06-10+04-5=6+2=38.

Thus, the expected reward V™ (s) = 8.

Problem 4: Gradient with Respect to Policy Parameters

Consider a softmax policy with two actions. The probabilities of actions a; and as are given by:

01 92

e
efr + ef2’

e

m(a1|s; 6) =
Compute the gradient Vy, logm(aqls;6).

Solution

The gradient of the log-probability is given by:
Vo, logm(ay|s;0) =1 — w(a1]s; 0).

Substitute m(a1]|s;6):

01 02

e e
efr +ef2 et el

Vo, logm(ai|s;0) =1 —

Thus, Vg, logm(ai|s; 0) = m(az|s; 0).

Problem 5: Monte-Carlo Policy Gradient

In a Monte-Carlo policy gradient method, the return G; at time step ¢ is the cumulative discounted reward:
[ee]
G = Z’YkR(St-s-k, attk),
k=0
where v = 0.9. Given rewards R(sy,a;) =5, R(S¢41,at41) = 3, R(St42, arr2) = 2, compute Gy.

Solution
Compute G; using the given rewards:
Gy =5+09-3+0.9%-2=5+27+1.62=9.32.

Thus, G; = 9.32.

10



