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1 26-AUG-24

1.1 Order, Linear, and PDE vs ODE

2 28-AUG-24

2.1 Motvation

Decision making is hard. How we tractably reason over a sequence of decisions is a subject for much research. One
potential mechanism for modeling sequential decision making is a Markov Decision Process.
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2.2 MDP

MDPS consist of a state S, action A, cost C, and transitionT .

2.2.1 What is a state?

A state refers to the sufficient statistic of the system to predict the future disregarding the past. This definition is
not really precise. More generally, the state is the status of the world. That’s a definition. Not the definition. We
show state as s ∈ S.

2.2.2 Action

Action refers to the decisions or, more basically, the act of doing something, or the control action.

2.2.3 Cost

The cost, or rewardd, is the instantaneous cost of an individual action within a state. This is denoted c(s, a).
Sometimes, we see c(s, a, t) (time-dependence). Sometime, we even have c(s, a, s′, t) indicating previous state matters
too. Dr. Baheri uses cost and reward interchangaby here.

2.2.4 Transition

Insert Anthony Fantano joke here. The transition refers to the next state given the state and action. In a deterministic
world, s′ = T (s, a), but stochastic worlds are more of s′ ∼= T (s, a).

Quiz: Given a system, whate are the components of the MDP and how do you formulate them?
Let’s identify the MDP components of Tetris.
State: Board configuration. Action: 4 ∗ 10 Cost: Userdefined. Transition: rule of game. Update of board game

+ random selection of next piece.
For a self-driving car, what are the MDP components?
We now move to a Markov Decision Problem. This includes the things to define an optimization problem.

2.3 MDP, continued

We first describe the Horizon, and discount.

2.3.1 Horizon

Simply when to make decision.

2.3.2 Discount Factor

Reward is more valuable at the current moment as opposed to the future! (Costs are more valuable when they
happen soon.) They are represented as a r ∈ R, 0 ≤ r ≤ 1. Think of it this like

c0 + rc1 + ...+ rt−1ct−1

The final goal of RL is to find a policy, essentially given state, what action do we have. We sek to find a policy
that minimizes the sum of discounted future costs.

3 06-SEP-2024

3.1 Solving Markov Decision processes

Solving an MDP, in general means to find a policy. Recall the definition of policy. Then a MDP is a function map
mapping decision to reward.

But a better question is finding optimal policy. What makes an optimal policy? The ultimate goal is to search
over a family of policies in order to find the sequence of actions that maximizes (or sometimes minimize) the notion
of the reward. That is, we seek to search over policies. Our goal in the slide is to minimize the Expected value. We
then discuss discount factor. The sooner that we get the reward is generally a better choice. Discount value implies
that future rewards mean that costs tend to matter less, as seen in previous slides. Therefore, in a case where we
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find optimal policies, we tend to work in the discounted version of the equation - that is we search over the poliies
that maxes or mins the total sum of the cost.

So, how do we solve? First, how NOT to solve: brute force. It simply takes far too long. We aren’t doing
bruteforce, because it takes far too long.

We use the Bellman equation.

Definition 1. The Bellman equation is defined as:

V π(st) = min
at

(c(st, π(st)) + γEst+1
V π(st+1))

Dr. Baheri wants us to recognize how gorgeous this equation is. Next, we discuss value iteraion and policy
iteration.

4 Policy-Guided diffusion

Oxford paper has some components of offline RL and diffusion modeling
Understanding Deep Learning Chapter 8 VAE - how the diffusion model works
Understanding Deep Learning , Reinforcement learning, offline RL, decision transformers GNN, transformers,

4.1 SAFE POLICY GUIDED DIFFUSION

from constraint optimization perspective - safety in many terms from convex optimization

5 09-SEP-24

Quiz on Friday: value iteration, policy iteration, temporal difference, computational questions.

6 11-SEP-24

Temporal Difference Learning

7 23-SEP-24

Policy Gradients! Heilmeier Catechism

8 Policy Gradient

These are a popular class of practical algorithms to solve RL problems.
There are ways we’ve solved for action-value function before. We did approximation before, approximately the

value function using parameters. Think function approximators. Now, we actually want to directly parametrize the
policy. That is:

πθ(s, a) = P[a|s, θ]

We define a probability distribution that change the probabilities as we move to different states, allowing us to
maximise reward. We care about model-free RL, and directly from experience, it can adjust its parameters of it’s
policy to maximize it’s reward.

We care about this because it allows us to scale, where we have uncertain environment.
There are three major categories of parametrized policy. Two words: gradient descent. We follow the gradient

in the direction that gets us to the most reward. We have value based and policy-based RL methods.
Are there advantages and disadvantages of policy-based vs value-based methods?
There are situations where it is more efficient to store policy as opposed to value function. Think atari games,

where the learned value function may be complicated af. However, it’s easier (compute-wise) to remember leftgood,
or something similar. Policy can be more compact.

Policy also works because it converges better (some value-based methods can have oscillatory issues, for instance).
If you directly follow policy, you’re guaranteed to converge. They are also effective in high-dimensional or continuous
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action spaces. With value based methods, you need to find a max. That can be expensive. It can also learn stochastic
policy.

Why would we ever want a stochastic policy? Consider the rock-paper-scissors analogy in class. If you just
play this deterministically, you get exploited. If you play one choice often, your opponent will catch up. Similarly,
if you have partially observable environments, as opposed to fully observable enviornments, the Markov Property
may not hold. We only see certain features of the environment. In the Aliased Gridworld example, the agent can’t
differentiate the grey states. The two grey squares are aliased. They look basically the same. Your feature vector
will be identical, which means that in a deterministic policy, you choose the same action! If you act greedily, you
either go west all the time or east all the time! Which doesn’t work. Stochastic policies work far better.

However, naive policy learning will typically converge to local as opposed to absolute minima. This is also
inefficient, with high variance.

8.1 Policy Objective functions

What is the best θ for policy πθ(s, a)? First of all, how would you even measure that? In episodic environments, use
the start value. That is, when I start the game at a start state, what policy ends with the best score?

This is represented as:

J1(θ) = V πθ (s1) = Eπθ
[V1]

In continuing environments, use the average value. That is, consider the policy we are in any state times the
value of all the states.

JavgV(θ) =
∑
s

dπθ (s)(V πθ (s))

Or, we look at the average reward per time step. There is some probability i am in a state, there’s some probability
of a reward, and this is the immediate reward i get at each time step.

JavgV(θ) =
∑
s

dπθ (s)
∑
a

πθ(s, a)R
d
s

dπθ is the stationary distribution of the markov chain for θ0.
As you can tell, this is clearly an optimization problem. Some approaches don’t use gradient, but greater efficiency

is possible using gradient algorithms.

8.2 Finite Difference Policy Gradient

Policy gradient algorithms search for a local maximum in the policy objective function by ascending the gradient of
the policy with respect to the parameters θ.

δθ = α∇θJ(θ)

Here,

∇θJ(θ) = [(
dJ(θ)

dθ1
)...(

dJ(θ)

dθα
)]T

and α is a step size parameter.
If you had no idea how to find the gradeitn, you can estimate by just perturbing θ. Literally, the limit definition

of the derivative:

dJ(θ)

dθk
≈ J + ϵuk − J(θ)

ϵ

where uk is a unit vector with 1 in the kth component, and 0 elsewhere. It’s simple, but sometimes effective, and
works on nondifferentiable policies. It works on fast AIBO walk for RoboCup.
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8.3 Monte-Carlo Policy Gradient

Now, we go to Monte-Carlo Policy Descent. We now compute the policy gradient analytically We have some policy
πθ which is differentiable when it is non-zero and we know the gradient ∇θπθ(s, a). There are some likelihood ratios
that basically show that:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
= πθ(s, a)∇θ log πθ(s, a)

This works because of calculus. We now have a score function ∇θ log πθ(s, a). This allows us to take expectations.
This is nice :).

Derivation of the Score Function We begin with the gradient of the policy πθ(s, a) with respect to the parameter
vector θ:

∇θπθ(s, a)

We can express this gradient in terms of the log-probability using a simple property from calculus:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)

Notice that ∇θπθ(s,a)
πθ(s,a)

is just the gradient of the log-probability:

∇θπθ(s, a)

πθ(s, a)
= ∇θ log πθ(s, a)

Thus, we can rewrite the original expression as:

∇θπθ(s, a) = πθ(s, a)∇θ log πθ(s, a)

This is a crucial result because it transforms the gradient of the probability πθ(s, a) into the probability itself
multiplied by the gradient of the log-probability, which is known as the score function:

∇θ log πθ(s, a)

Why This is Useful This result allows us to express expectations involving the gradient of the policy in a more
tractable form. For example, for any function f(s, a), we can take the expectation over actions under the policy
πθ(s, a) as:

Ea∼πθ(s) [∇θ log πθ(s, a)f(s, a)]

This is particularly useful in policy gradient methods, where we seek to optimize the expected return by adjust-
ing θ. The use of the score function simplifies the calculation of gradients for stochastic policies, as we can take
expectations of the log-probabilities rather than directly computing derivatives of probabilities.

Conclusion By expressing the gradient in terms of the log-probability, we obtain a more convenient form that
facilitates taking expectations over actions. This is a key technique in reinforcement learning algorithms like REIN-
FORCE.

What does this look like?

Softmax Policy with Linear Features In a softmax policy, the probability of selecting an action a in a given
state s is determined by the exponentiated linear combination of features. Let ϕ(s, a) be the feature vector associated
with the state-action pair (s, a), and θ be the parameter vector. The action probabilities are computed as follows:

π(a | s; θ) = exp(ϕ(s, a)T θ)∑
a′∈A exp(ϕ(s, a′)T θ)

where: - π(a | s; θ) is the probability of taking action a given state s and parameter vector θ. - ϕ(s, a) is the
feature vector for state s and action a. - θ is the parameter vector to be learned. - A is the set of all possible actions.

The numerator, exp(ϕ(s, a)T θ), represents the weight assigned to action a based on the features of the state-action
pair (s, a) and the parameters θ. The denominator normalizes these weights by summing over all possible actions a′.
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Score Function The score function, which is the gradient of the log-probability of taking action a in state s, is
given by:

∇θ log π(a | s; θ) = ϕ(s, a)−
∑
a′∈A

π(a′ | s; θ)ϕ(s, a′)

where: - ∇θ log π(a | s; θ) is the gradient of the log-probability with respect to the parameters θ. - ϕ(s, a) is the
feature vector for the selected action a. - π(a′ | s; θ) is the probability of selecting action a′ under the policy. - The
term

∑
a′∈A π(a′ | s; θ)ϕ(s, a′) is the expected value of the feature vector under the current policy, weighted by the

action probabilities.

Explanation - The softmax policy ensures that actions with higher weights (i.e., ϕ(s, a)T θ) have higher probabili-
ties of being selected, while still assigning non-zero probabilities to all actions. - The score function is important for
policy gradient methods, as it allows us to update the parameters θ in a direction that improves the probability of
good actions.

In continuous action spaces, you use Gaussian Policy.

Gaussian Policy In many reinforcement learning problems, especially those with continuous action spaces, the
policy πθ(a | s) is modeled as a Gaussian distribution. For a state s, the policy outputs a mean µθ(s) and standard
deviation σθ(s), parameterized by θ. The action a is then drawn from a Gaussian distribution:

a ∼ N (µθ(s), σθ(s)
2)

The probability density function (PDF) of a Gaussian policy can be written as:

πθ(a | s) =
1√

2πσθ(s)2
exp

(
− (a− µθ(s))

2

2σθ(s)2

)
where: - µθ(s) is the mean of the Gaussian distribution, which is a function of the state s and the parameters θ.

- σθ(s) is the standard deviation of the Gaussian, which may also be parameterized by θ. - a is the action sampled
from this Gaussian distribution.

Log-Probability of a Gaussian Policy The log-probability of taking action a under the Gaussian policy is
computed as follows:

log πθ(a | s) = −
1

2
log(2πσθ(s)

2)− (a− µθ(s))
2

2σθ(s)2

This expression is the natural logarithm of the Gaussian PDF.

Score Function for a Gaussian Policy The score function is the gradient of the log-probability of taking action
a with respect to the parameters θ. Let’s compute it for both the mean and the standard deviation.

1. **Gradient with respect to the mean** µθ(s):

∇θ log πθ(a | s) =
a− µθ(s)

σθ(s)2
∇θµθ(s)

This shows that the score function with respect to the mean is proportional to the error between the action a
and the mean µθ(s), weighted by the variance σθ(s)

2.
2. **Gradient with respect to the standard deviation** σθ(s):

∇θ log πθ(a | s) =
(
(a− µθ(s))

2

σθ(s)3
− 1

σθ(s)

)
∇θσθ(s)

This shows that the score function with respect to the standard deviation takes into account how far the action
a is from the mean, normalized by the variance.
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Summary For a Gaussian policy, the score function allows us to compute the gradient of the log-probability of
selecting an action with respect to the policy parameters. Specifically:

- The gradient with respect to the mean µθ(s) is proportional to the difference between the action and the mean,
scaled by the variance. - The gradient with respect to the standard deviation σθ(s) includes terms that capture the
variability of the actions with respect to the mean.

These gradients are useful in policy gradient algorithms where the goal is to optimize the parameters θ to improve
the expected return.

8.4 One-step MDPs

One-Step MDPs A one-step MDP is a simplified version of a Markov Decision Process (MDP) in which the agent
makes a single decision, receives a reward, and then terminates. This setup is useful for illustrating key concepts in
reinforcement learning, as it eliminates the complexity of multi-step transitions.

In a one-step MDP, given a state s, the agent selects an action a according to a policy π(a | s), receives an
immediate reward R(s, a), and then transitions to the terminal state. The value of taking action a in state s under
policy π, denoted as Qπ(s, a), is simply the expected reward:

Qπ(s, a) = E[R(s, a)]

The state-value function V π(s), which represents the expected reward for the agent starting in state s and
following policy π, is the expectation over all possible actions:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Substituting Qπ(s, a), we have:

V π(s) =
∑
a

π(a | s)E[R(s, a)]

Policy Optimization in One-Step MDPs

One-Step MDPs A one-step Markov Decision Process (MDP) simplifies the typical MDP structure to a single
decision step. The agent selects an action a from a state s, receives an immediate reward R(s, a), and the process
terminates. This simplified structure helps illustrate key reinforcement learning concepts.

For a one-step MDP, the objective is to maximize the expected reward J(θ), where the policy is parameterized
by θ. The value of taking action a in state s, denoted by Qπ(s, a), is simply the expected reward for that action:

Qπ(s, a) = E[R(s, a)]

The value of the state under policy π, denoted as V π(s), is the expected reward over all possible actions, weighted
by the policy’s action probabilities:

V π(s) =
∑
a

π(a | s)Qπ(s, a)

Substituting Qπ(s, a) = E[R(s, a)], we have:

V π(s) =
∑
a

π(a | s)E[R(s, a)]

Objective Function J(θ) in One-Step MDPs The goal is to optimize the policy πθ(a | s) to maximize the
expected reward. This objective is captured by the function J(θ), which is defined as the expected reward under the
current policy:

J(θ) = Ea∼πθ
[R(s, a)]

To optimize J(θ), we compute the gradient with respect to θ. Using the score function ∇θ log πθ(a | s), we derive
the policy gradient as follows:
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∇θJ(θ) = Ea∼πθ
[∇θ log πθ(a | s)R(s, a)]

This formulation allows us to adjust θ to improve the expected reward by updating the policy in the direction of
the gradient.

To now do this for multistep MDPS, chance the instantaneous reward with the long-term value function.

Multi-Step MDPs In a multi-step Markov Decision Process (MDP), the agent interacts with the environment
over several time steps. At each time step t, the agent takes an action at in state st, receives a reward R(st, at), and
transitions to a new state st+1. The goal is to maximize the expected long-term return, which is the cumulative sum
of discounted rewards:

Gt =

∞∑
k=0

γkR(st+k, at+k),

where γ ∈ [0, 1) is the discount factor that determines how future rewards are weighted relative to immediate
rewards.

The state-value function V π(s) represents the expected return starting from state s and following policy π:

V π(s) = Eπ[Gt | st = s].

Similarly, the action-value function Qπ(s, a) represents the expected return after taking action a in state s and
following policy π:

Qπ(s, a) = Eπ[Gt | st = s, at = a].

Policy Objective J(θ) In multi-step MDPs, the objective is to optimize the policy πθ(a | s) to maximize the
expected long-term return. The objective function J(θ) is defined as the expected return:

J(θ) = Es∼ρπ,a∼πθ
[Gt],

where ρπ(s) is the state distribution under policy π.

Theorem 1 (Policy Gradient Theorem). The gradient of the objective function J(θ) with respect to the policy
parameters θ is given by:

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a | s)Qπ(s, a)] .

This theorem states that the gradient of the expected return is proportional to the expected gradient of the log-
probability of the policy, weighted by the action-value function Qπ(s, a). In practice, Qπ(s, a) may be approximated
using either real rewards or learned estimates of the action-value function.

Using the score function ∇θ log πθ(a | s), we can express the policy gradient as:

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a | s)Gt] .

This form of the gradient is the foundation of policy gradient methods in reinforcement learning, allowing us to
adjust the policy parameters θ in the direction that maximizes the expected return.

Monte Carlo Policy Gradient (REINFORCE) The policy gradient theorem forms the basis for the Monte
Carlo Policy Gradient, also known as the REINFORCE algorithm. In this algorithm, the parameters of the policy
are updated by stochastic gradient ascent using samples from the environment.

From the policy gradient theorem, the gradient of the objective function J(θ) is given by:

∇θJ(θ) = Es∼ρπ,a∼πθ
[∇θ log πθ(a | s)Qπ(s, a)] .

Since the true action-value function Qπ(st, at) is typically unknown, we use the return Gt (the cumulative reward)
as an unbiased sample of Qπ(st, at). This is the foundation of the REINFORCE algorithm.

At each time step t, the agent observes a state st, takes an action at, and receives a reward. After completing an
episode, the return Gt from each state-action pair can be computed as:
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Gt =

∞∑
k=0

γkR(st+k, at+k),

where γ is the discount factor. The return Gt serves as an unbiased estimate of Qπ(st, at), allowing us to compute
the policy gradient for each episode.

Stochastic Gradient Ascent Using Gt as a sample of the action-value function, the gradient of the policy can
be approximated as:

∇θJ(θ) ≈
T∑

t=0

∇θ log πθ(at | st)Gt,

where T is the length of the episode. The parameters θ of the policy are updated using stochastic gradient ascent
as follows:

θ ← θ + α

T∑
t=0

∇θ log πθ(at | st)Gt,

where α is the learning rate. This update rule incrementally improves the policy by adjusting the parameters θ
in the direction that increases the expected return.

Summary The REINFORCE algorithm updates the policy parameters by performing stochastic gradient ascent
using the sampled returns Gt. Since Gt is an unbiased estimate of Qπ(st, at), this method optimizes the policy over
time without requiring a model of the environment.

8.5 Actor-Critic Policy Gradient

However, Monte-Carlo policy gradients still have high variance. Now, we use a critic to estimate the action -
value function, which updates actional value function parameters w which updates policy parameters θ in direction
suggested by the critic. This follows an approximate policy gradient.

Reducing Variance with a Critic While the Monte Carlo policy gradient (REINFORCE) algorithm provides
a straightforward approach to policy optimization, it suffers from high variance due to the stochastic nature of the
returns Gt. High variance can lead to unstable learning and slow convergence.

To mitigate this issue, we introduce a critic, which is a value function estimator that approximates the action-
value function Qπ(s, a). The critic uses its own parameters w to predict the expected return, allowing for more stable
and lower-variance updates to the policy.

The critic is trained to minimize the mean squared error between its predictions and the actual returns:

L(w) =
1

2
E
[
(Q(st, at;w)−Gt)

2
]
,

where Q(st, at;w) is the estimated action-value function given state st and action at, and Gt is the return observed
after taking action at.

Approximate Policy Gradient Once the critic provides an estimate of the action-value function, we can use this
estimate to update the policy parameters θ. The approximate policy gradient can be expressed as:

∇θJ(θ) ≈ E [∇θ log πθ(at | st)Q(st, at;w)] .

In this formulation, Q(st, at;w) serves as a more stable estimate of the action-value function compared to using
the return Gt directly. The parameters of the policy are then updated using:

θ ← θ + α∇θJ(θ),

where α is the learning rate.
By leveraging the critic, we perform policy updates that are more reliable and less susceptible to variance, leading

to faster and more stable learning in reinforcement learning tasks.
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Summary Incorporating a critic into the policy gradient framework allows us to reduce variance and improve
the stability of policy updates. By estimating the action-value function using a separate set of parameters w, we
achieve more reliable updates to the policy parameters θ, following an approximate policy gradient approach. This
methodology is a fundamental aspect of actor-critic algorithms in reinforcement learning.
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