

Comprehensive Notes on Policy Gradient Methods

Claude AI

1 Introduction to Policy-Based Reinforcement Learning

Policy-based reinforcement learning (RL) is an approach where we directly optimize the policy $\pi(a|s)$ that maps states to actions, instead of learning a value function and deriving a policy from it. This method has several advantages:

- It can learn stochastic policies
- It can handle continuous action spaces naturally
- It can solve problems with perceptual aliasing

2 Policy Objective Functions

In policy-based RL, we define an objective function $J(\theta)$ that we aim to maximize. Common choices include:

1. Start value: $J_1(\theta) = V^\pi(s_1)$
2. Average value: $J_{avV}(\theta) = \sum_s d^\pi(s)V^\pi(s)$
3. Average reward per time-step: $J_{avR}(\theta) = \sum_s d^\pi(s) \sum_a \pi(a|s)R(s, a)$

where $d^\pi(s)$ is the stationary distribution of Markov chain for π .

3 Policy Gradient Theorem

The policy gradient theorem states that for any differentiable policy $\pi(\theta)$ and for any policy objective function $J(\theta)$, the policy gradient is:

$$\nabla_\theta J(\theta) = \mathbb{E}_\pi[\nabla_\theta \log \pi(a|s)Q^\pi(s, a)] \quad (1)$$

Proof:

We'll prove this for the start state objective $J_1(\theta) = V^\pi(s_1)$. Let's start with the definition of the value function:

$$V^\pi(s) = \mathbb{E}_\pi[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots | s_t = s] \quad (2)$$

Taking the gradient with respect to θ :

$$\nabla_\theta V^\pi(s) = \nabla_\theta \mathbb{E}_\pi[r_t + \gamma V^\pi(s_{t+1}) | s_t = s] \quad (3)$$

$$= \sum_a \nabla_\theta \pi(a|s) Q^\pi(s, a) + \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) \nabla_\theta V^\pi(s') \quad (4)$$

Let $x(s) = \nabla_\theta V^\pi(s)$. Then we can write:

$$x(s) = \sum_a \nabla_\theta \pi(a|s) Q^\pi(s, a) + \gamma \sum_a \pi(a|s) \sum_{s'} P(s'|s, a) x(s') \quad (5)$$

This is a linear system of equations. We can solve it as:

$$x = b + \gamma Px \quad (6)$$

where $b(s) = \sum_a \nabla_\theta \pi(a|s) Q^\pi(s, a)$ and P is the transition matrix under π . The solution to this system is:

$$x = (I - \gamma P)^{-1} b \quad (7)$$

Now, let $d^\pi(s)$ be the stationary distribution of P . Multiplying both sides by $d^\pi(s)^T$:

$$d^\pi(s)^T x = d^\pi(s)^T (I - \gamma P)^{-1} b \quad (8)$$

The left side is what we want: $\nabla_\theta J(\theta)$. For the right side:

$$d^\pi(s)^T (I - \gamma P)^{-1} = d^\pi(s)^T (I + \gamma P + \gamma^2 P^2 + \dots) \quad (9)$$

$$= d^\pi(s)^T + \gamma d^\pi(s)^T + \gamma^2 d^\pi(s)^T + \dots \quad (10)$$

$$= \frac{1}{1 - \gamma} d^\pi(s)^T \quad (11)$$

Therefore:

$$\nabla_\theta J(\theta) = \frac{1}{1 - \gamma} d^\pi(s)^T b \quad (12)$$

$$= \frac{1}{1 - \gamma} \sum_s d^\pi(s) \sum_a \nabla_\theta \pi(a|s) Q^\pi(s, a) \quad (13)$$

$$= \frac{1}{1 - \gamma} \sum_s d^\pi(s) \sum_a \pi(a|s) \frac{\nabla_\theta \pi(a|s)}{\pi(a|s)} Q^\pi(s, a) \quad (14)$$

$$= \frac{1}{1 - \gamma} \mathbb{E}_\pi[\nabla_\theta \log \pi(a|s) Q^\pi(s, a)] \quad (15)$$

This completes the proof of the policy gradient theorem.

4 REINFORCE Algorithm

The REINFORCE algorithm is a Monte Carlo policy gradient method:

1. Generate an episode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ following π
2. For each step $t = 0, \dots, T-1$:
 - $G_t \leftarrow$ return from step t
 - $\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi(A_t|S_t) G_t$

5 Reducing Variance with a Baseline

We can reduce the variance of policy gradient estimates by subtracting a baseline:

$$\nabla_\theta J(\theta) = \mathbb{E}_\pi[\nabla_\theta \log \pi(a|s)(Q^\pi(s, a) - b(s))] \quad (16)$$

A good choice for the baseline is the state value function $V^\pi(s)$.

6 Actor-Critic Methods

Actor-Critic methods combine policy-based and value-based learning. The actor (policy) is updated according to the critic's (value function) evaluation.

A simple actor-critic algorithm:

1. Initialize s, θ, w
2. Sample $a \sim \pi(a|s)$
3. Take action a , observe r, s'
4. $\delta = r + \gamma V_w(s') - V_w(s)$
5. $w \leftarrow w + \beta \delta \nabla_w V_w(s)$
6. $\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi(a|s) \delta$
7. $s \leftarrow s'$
8. Go to 2

7 Advantage Actor-Critic (A2C)

A2C uses the advantage function $A(s, a) = Q(s, a) - V(s)$ instead of just $Q(s, a)$:

$$\nabla_\theta J(\theta) = \mathbb{E}_\pi[\nabla_\theta \log \pi(a|s) A^\pi(s, a)] \quad (17)$$

We can estimate the advantage function using TD error:

$$A(s_t, a_t) \approx r_t + \gamma V(s_{t+1}) - V(s_t) \quad (18)$$

8 Conclusion

Policy gradient methods offer a powerful approach to reinforcement learning, especially in domains with continuous action spaces or partial observability. While they can suffer from high variance, techniques like baselines and actor-critic methods help mitigate this issue. Advanced algorithms like A2C, which we've discussed, form the foundation for many state-of-the-art RL algorithms.