
Comprehensive Notes on Policy Gradient

Methods

Claude AI

1 Introduction to Policy-Based Reinforcement
Learning

Policy-based reinforcement learning (RL) is an approach where we directly op-
timize the policy π(a|s) that maps states to actions, instead of learning a value
function and deriving a policy from it. This method has several advantages:

� It can learn stochastic policies

� It can handle continuous action spaces naturally

� It can solve problems with perceptual aliasing

2 Policy Objective Functions

In policy-based RL, we define an objective function J(θ) that we aim to maxi-
mize. Common choices include:

1. Start value: J1(θ) = V π(s1)

2. Average value: JavV (θ) =
∑

s d
π(s)V π(s)

3. Average reward per time-step: JavR(θ) =
∑

s d
π(s)

∑
a π(a|s)R(s, a)

where dπ(s) is the stationary distribution of Markov chain for π.

3 Policy Gradient Theorem

The policy gradient theorem states that for any differentiable policy π(θ) and
for any policy objective function J(θ), the policy gradient is:

∇θJ(θ) = Eπ[∇θ log π(a|s)Qπ(s, a)] (1)

Proof:
We’ll prove this for the start state objective J1(θ) = V π(s1). Let’s start

with the definition of the value function:

1

V π(s) = Eπ[rt + γrt+1 + γ2rt+2 + ...|st = s] (2)

Taking the gradient with respect to θ:

∇θV
π(s) = ∇θEπ[rt + γV π(st+1)|st = s] (3)

=
∑
a

∇θπ(a|s)Qπ(s, a) +
∑
a

π(a|s)
∑
s′

P (s′|s, a)∇θV
π(s′) (4)

Let x(s) = ∇θV
π(s). Then we can write:

x(s) =
∑
a

∇θπ(a|s)Qπ(s, a) + γ
∑
a

π(a|s)
∑
s′

P (s′|s, a)x(s′) (5)

This is a linear system of equations. We can solve it as:

x = b+ γPx (6)

where b(s) =
∑

a∇θπ(a|s)Qπ(s, a) and P is the transition matrix under π.
The solution to this system is:

x = (I − γP)−1b (7)

Now, let dπ(s) be the stationary distribution of P . Multiplying both sides
by dπ(s)T :

dπ(s)Tx = dπ(s)T (I − γP)−1b (8)

The left side is what we want: ∇θJ(θ). For the right side:

dπ(s)T (I − γP)−1 = dπ(s)T (I + γP + γ2P 2 + ...) (9)

= dπ(s)T + γdπ(s)T + γ2dπ(s)T + ... (10)

=
1

1− γ
dπ(s)T (11)

Therefore:

∇θJ(θ) =
1

1− γ
dπ(s)T b (12)

=
1

1− γ

∑
s

dπ(s)
∑
a

∇θπ(a|s)Qπ(s, a) (13)

=
1

1− γ

∑
s

dπ(s)
∑
a

π(a|s)∇θπ(a|s)
π(a|s)

Qπ(s, a) (14)

=
1

1− γ
Eπ[∇θ log π(a|s)Qπ(s, a)] (15)

This completes the proof of the policy gradient theorem.

2

4 REINFORCE Algorithm

The REINFORCE algorithm is a Monte Carlo policy gradient method:

1. Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT following π

2. For each step t = 0, ..., T − 1:

� Gt ← return from step t

� θ ← θ + α∇θ log π(At|St)Gt

5 Reducing Variance with a Baseline

We can reduce the variance of policy gradient estimates by subtracting a base-
line:

∇θJ(θ) = Eπ[∇θ log π(a|s)(Qπ(s, a)− b(s))] (16)

A good choice for the baseline is the state value function V π(s).

6 Actor-Critic Methods

Actor-Critic methods combine policy-based and value-based learning. The actor
(policy) is updated according to the critic’s (value function) evaluation.

A simple actor-critic algorithm:

1. Initialize s, θ, w

2. Sample a ∼ π(a|s)

3. Take action a, observe r, s′

4. δ = r + γVw(s
′)− Vw(s)

5. w ← w + βδ∇wVw(s)

6. θ ← θ + α∇θ log π(a|s)δ

7. s← s′

8. Go to 2

7 Advantage Actor-Critic (A2C)

A2C uses the advantage function A(s, a) = Q(s, a)−V (s) instead of just Q(s, a):

∇θJ(θ) = Eπ[∇θ log π(a|s)Aπ(s, a)] (17)

We can estimate the advantage function using TD error:

A(st, at) ≈ rt + γV (st+1)− V (st) (18)

3

8 Conclusion

Policy gradient methods offer a powerful approach to reinforcement learning,
especially in domains with continuous action spaces or partial observability.
While they can suffer from high variance, techniques like baselines and actor-
critic methods help mitigate this issue. Advanced algorithms like A2C, which
we’ve discussed, form the foundation for many state-of-the-art RL algorithms.

4

