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1 Introduction to Policy-Based Reinforcement
Learning

Policy-based reinforcement learning (RL) is an approach where we directly op-
timize the policy 7(a|s) that maps states to actions, instead of learning a value
function and deriving a policy from it. This method has several advantages:

e It can learn stochastic policies
e It can handle continuous action spaces naturally

e It can solve problems with perceptual aliasing

2 Policy Objective Functions

In policy-based RL, we define an objective function J(6) that we aim to maxi-
mize. Common choices include:

1. Start value: Jy(0) = V7™(s1)
2. Average value: Jo,v(0) =, d™(s)V™(s)
3. Average reward per time-step: Jour(0) =D, d"(s) >, m(a|s)R(s,a)

where d™(s) is the stationary distribution of Markov chain for .

3 Policy Gradient Theorem

The policy gradient theorem states that for any differentiable policy 7(6) and
for any policy objective function J(#), the policy gradient is:

VoJ(0) = E,[Volognm(als)Q™(s,a)] (1)

Proof:
We'll prove this for the start state objective Ji(6) = V™(s1). Let’s start
with the definition of the value function:



Vﬂ'(s) = Eﬂ'[rt + Yrig1 + ’YQ’I"tJrg + |St = S]
Taking the gradient with respect to 6:

VoV (s) = VoEr[re + V7 (st41)]s¢ = 3]
= Z Vor(als)Q™ (s,a) + Z m(als) Z P(s'|s,a)VaV™(s")
Let 2(s) = VoV ™(s). Then we can write:
z(s) = Z Vor(als)Q™ (s,a) + v Z m(als) Z P(s'|s,a)z(s")
This is a linea: system of equations. W«: can solveS it as:

r=b+vyPzx

()

(6)

where b(s) = Y, Vgm(a|s)Q™(s,a) and P is the transition matrix under 7.

The solution to this system is:

z=(I—-~P)" '

(7)

Now, let d™(s) be the stationary distribution of P. Multiplying both sides

by d™(s)T":

d™(s)Tx = d™(s)"(I —~vP)"'b
The left side is what we want: VgJ(0). For the right side:

d™(s)T(I —~P)™ L =d™(s)T(I +yP+~*P* + ..)
d™(s)T 4+ ~d™(s)T +~2d™(s)T + ...
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Therefore:
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VQJ(G) = mdﬂ(S)Tb
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= ﬁﬂf (Vo log 7(als)Q" (s, a)]

This completes the proof of the policy gradient theorem.



4 REINFORCE Algorithm

The REINFORCE algorithm is a Monte Carlo policy gradient method:
1. Generate an episode Sy, Ag, Ry, ..., S7—1, Ar_1, R following 7
2. For each stept =0,...,T — 1:

e (G4 + return from step ¢
e 0+ 0 + OZV(.,J IOg ’/T(At‘St)Gt

5 Reducing Variance with a Baseline

We can reduce the variance of policy gradient estimates by subtracting a base-
line:
VoJ(0) = E, [Vglogm(als)(Q™(s,a) — b(s))] (16)

A good choice for the baseline is the state value function V7 (s).

6 Actor-Critic Methods

Actor-Critic methods combine policy-based and value-based learning. The actor
(policy) is updated according to the critic’s (value function) evaluation.
A simple actor-critic algorithm:

1. Initialize s, 0, w

2. Sample a ~ 7(als)

3. Take action a, observe r, s’
4. 5 =r+4Vy(s') = Vi(s)

5. w4 w+ BV, Viy(s)

6. 0 < 0+ aVylogn(als)d

7. s+ ¢
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. Goto2

7 Advantage Actor-Critic (A2C)
A2C uses the advantage function A(s,a) = Q(s,a)—V(s) instead of just Q(s, a):

VoJ(0) =E,[Vglogn(als)A™(s,a)] (17)

We can estimate the advantage function using TD error:

A(St, Clt) T+ ’}/V(St+1) — V(St) (18)



8 Conclusion

Policy gradient methods offer a powerful approach to reinforcement learning,
especially in domains with continuous action spaces or partial observability.
While they can suffer from high variance, techniques like baselines and actor-
critic methods help mitigate this issue. Advanced algorithms like A2C, which
we’ve discussed, form the foundation for many state-of-the-art RL algorithms.



